[论文翻译]特征融合迁移能力感知Transformer在无监督域自适应中的应用
无监督域适应 (UDA) 旨在利用从带标签的源域学到的知识提升无标签目标域的性能。虽然卷积神经网络 (CNN) 在以往的 UDA 方法中占据主导地位,但近期研究表明视觉 Transformer (ViT) 在该任务中具有潜力。本研究提出了一种新颖的特征融合迁移能力感知 Transformer (FFTAT) 来增强 ViT 在 UDA 任务中的表现。我们的方法包含两项关键创新:首先,引入一个 patch 判别器来评估 patch 的迁移能力,生成迁移能力矩阵。我们将该矩阵整合到自注意力机制中,引导模型关注可迁移的 patch。