• [论文翻译]特征融合迁移能力感知Transformer在无监督域自适应中的应用

    无监督域适应 (UDA) 旨在利用从带标签的源域学到的知识提升无标签目标域的性能。虽然卷积神经网络 (CNN) 在以往的 UDA 方法中占据主导地位,但近期研究表明视觉 Transformer (ViT) 在该任务中具有潜力。本研究提出了一种新颖的特征融合迁移能力感知 Transformer (FFTAT) 来增强 ViT 在 UDA 任务中的表现。我们的方法包含两项关键创新:首先,引入一个 patch 判别器来评估 patch 的迁移能力,生成迁移能力矩阵。我们将该矩阵整合到自注意力机制中,引导模型关注可迁移的 patch。
创作中心
开启你的AI千集创作之旅
发布首篇内容,开通创作中心 快来成为AI千集创作者吧~
公告

AI千集是一个二次元智能客服平台
在这里您可以获得本平台自训练的
客服大模型服务
和小伙伴一起玩转AI,做自己的AI机器人
来AI千集,订单转化快人一步
扫一扫,快速获取解决方案与报价
立即咨询

千集助理是连通AI学研和企业的桥梁
登陆小程序
获取AI数字人贴身服务
工作生活效率瞬间提升

千集助理