[论文翻译]MAST:基于三模态分层注意力的多模态抽象摘要生成


原文地址:https://arxiv.org/pdf/2010.08021v1


MAST: Multimodal Abstract ive Sum mari z ation with Trimodal Hierarchical Attention

MAST:基于三模态分层注意力的多模态抽象摘要生成

Abstract

摘要

This paper presents MAST, a new model for Multimodal Abstract ive Text Summarization that utilizes information from all three modalities – text, audio and video – in a multimodal video. Prior work on multimodal abstractive text sum mari z ation only utilized information from the text and video modalities. We examine the usefulness and challenges of deriving information from the audio modality and present a sequence-to-sequence trimodal hierarchical attention-based model that overcomes these challenges by letting the model pay more attention to the text modality. MAST outperforms the current state of the art model (video-text) by 2.51 points in terms of Content F1 score and 1.00 points in terms of Rouge-L score on the How2 dataset for multimodal language understanding.

本文提出MAST,一种新型多模态抽象文本摘要模型,该模型综合利用视频中文本、音频和视觉三种模态的信息。此前多模态抽象文本摘要研究仅利用文本和视觉模态信息。我们探究了从音频模态提取信息的价值与挑战,并提出基于层级注意力机制的序列到序列三模态模型,通过增强模型对文本模态的关注度来解决这些挑战。在How2多模态语言理解数据集上,MAST以内容F1值2.51分和Rouge-L值1.00分的优势超越当前最佳(视频-文本)模型。

1 Introduction

1 引言

In recent years, there has been a dramatic rise in information access through videos, facilitated by a proportional increase in the number of videosharing platforms. This has led to an enormous amount of information accessible to help with our day-to-day activities. The accompanying transcripts or the automatic speech-to-text transcripts for these videos present the same information in the textual modality. However, all this information is often lengthy and sometimes incomprehensible because of verbosity. These limitations in user experience and information access are improved upon by the recent advancements in the field of multimodal text sum mari z ation.

近年来,随着视频分享平台数量的激增,通过视频获取信息的方式呈现爆发式增长。这使得海量信息得以帮助我们完成日常活动。这些视频附带的文字记录或自动语音转文字记录以文本形式呈现相同内容。然而,由于内容冗长,这些信息往往篇幅巨大且有时难以理解。多模态文本摘要 (multimodal text summarization) 领域的最新进展正逐步改善这些用户体验和信息获取方面的局限。

Multimodal text sum mari z ation is the task of condensing this information from the interacting modalities into an output summary. This generated output summary may be unimodal or multimodal (Zhu et al., 2018). The textual summary may, in turn, be extractive or abstract ive. The task of extractive multimodal text sum mari z ation involves selection and concatenation of the most important sentences in the input text without altering the sentences or their sequence in any way. Li et al. (2017) made the selection of these important sentences using visual and acoustic cues from the corresponding visual and auditory modalities. On the other hand, the task of abstract ive multimodal text sum mari z ation involves identification of the theme of the input data and the generation of words based on the deeper understanding of the material. This is a tougher problem to solve which has been alleviated with the advancements in the abstract ive text sum mari z ation techniques – Rush et al. (2015), See et al. (2017) and Liu and Lapata (2019). Sanabria et al. (2018) introduced the How2 dataset for large-scale multimodal language understanding, and Palaskar et al. (2019) were able to produce state of the art results for multimodal abstract ive text sum mari z ation on the dataset. They utilized a sequence-to-sequence hierarchical attention based technique (Libovicky and Helcl, 2017) for combining textual and image features to produce the textual summary from the multimodal input. Moreover, they used speech for generating the speech-to-text transcriptions using pre-trained speech recognizer s, however it did not supplement the other modalities.

多模态文本摘要任务旨在从交互模态中浓缩信息生成输出摘要。生成的摘要可能是单模态或多模态的 (Zhu et al., 2018)。文本摘要又可分为抽取式和生成式。抽取式多模态文本摘要任务需要在不改变句子或其顺序的前提下,从输入文本中选择并拼接最重要的句子。Li et al. (2017) 通过视觉和听觉模态中的视觉与声学线索来筛选重要句子。而生成式多模态文本摘要任务则需要识别输入数据的主题,并基于对材料的深入理解生成词汇。这是一个更复杂的难题,但随着生成式文本摘要技术的进步得以缓解——如 Rush et al. (2015)、See et al. (2017) 以及 Liu 和 Lapata (2019) 的研究。Sanabria et al. (2018) 提出了用于大规模多模态语言理解的 How2 数据集,Palaskar et al. (2019) 则在该数据集上实现了多模态生成式文本摘要的顶尖成果。他们采用基于序列到序列分层注意力的技术 (Libovicky and Helcl, 2017) 来融合文本与图像特征,从而从多模态输入中生成文本摘要。此外,他们使用预训练语音识别器生成语音转文字记录,但该模态并未对其他模态形成补充。

Though the previous work in abstract ive multimodal text sum mari z ation has been promising, it has not yet been able to capture the effects of combining the audio features. Our work improves upon this shortcoming by examining the benefits and challenges of introducing the audio modality as part of our solution. We hypothesize that the audio modality can impart additional useful information for the text sum mari z ation task by letting the model pay more attention to words that are spoken with a certain tone or level of emphasis. Through our experiments, we were able to prove that not all modalities contribute equally to the output. We found a higher contribution of text, followed by video and then by audio. This formed the motivation for our MAST model, which places higher importance on text input while generating the output summary. MAST is able to produce a more illustrative summary of the original text (see Table 1) and achieves state of the art results.

尽管先前在抽象多模态文本摘要 (abstractive multimodal text summarization) 领域的研究取得了进展,但尚未能充分捕捉结合音频特征的效果。我们的工作通过探索引入音频模态作为解决方案一部分的优势与挑战,改进了这一不足。我们假设音频模态能为文本摘要任务提供额外有用信息,使模型更关注以特定语调或强调程度说出的词语。实验证明,并非所有模态对输出的贡献均等:文本贡献最高,其次是视频,最后是音频。这促使我们开发了MAST模型,该模型在生成摘要时更重视文本输入。MAST能生成更具阐释性的原文摘要(见表1),并取得了最先进的成果。

Table 1: Comparison of outputs by using different modality configurations for a test video example. Frequently occurring words are highlighted in red, which are easier for a simpler model to predict but do not contribute much in terms of useful content. The summary generated by the MAST model contains more content words as compared to the baselines.

表 1: 针对测试视频示例使用不同模态配置的输出对比。高频词以红色高亮显示,这些词汇更容易被简单模型预测但对有效内容贡献不大。与基线模型相比,MAST模型生成的摘要包含更多实义词。

| 原始文本: 现在我们来谈谈如何用蛆饵装钩。通常你会用它来钓泛鱼类。这不是广为人知的常见技巧,但在某些日子,它可能成为钓到鱼和空手而归的关键。你只需选用更大的蛆虫(可能更适合这种大钩),将钩子直接穿过蛆体。像这样的大钩,我可能会挂上十条蛆,把整只钩排满。这更适合钓泛鱼类,比如鲈鱼和太阳鱼等小型鱼。但如果你有这类蛆虫、面包虫,或是 |
| 文本仅: 冰钓用于冰钓。在这个免费钓鱼视频中向经验丰富的渔民学习钓鱼课程。 |
| MAST模型: 蛆虫适合钓鲈鱼。了解更多 |

In summary, our primary contributions are:

总之,我们的主要贡献包括:

2 Methodology

2 方法论

In this section we describe (1) the dataset used, (2) the modalities, and (3) our MAST model’s architec

在本节中,我们将介绍:(1) 使用的数据集,(2) 模态类型,以及 (3) 我们的 MAST 模型架构

ture. The code for our model is available online1.

我们的模型代码已在线发布1。

2.1 Dataset

2.1 数据集

We use the 300h version of the How2 dataset (Sanabria et al., 2018) of open-domain videos. The dataset consists of about 300 hours of short instructional videos spanning different domains such as cooking, sports, indoor/outdoor activities, music, and more. A human-generated transcript accompanies each video, and a 2 to 3 sentence summary is available for every video, written to generate interest in a potential viewer. The 300h version is used instead of the 2000h version because the audio modality information is only available for the 300h subset.

我们使用How2数据集的300小时版本(Sanabria等人,2018),这是一个开放领域的视频数据集。该数据集包含约300小时的简短教学视频,涵盖烹饪、体育、室内/室外活动、音乐等多个领域。每段视频都附有人工生成的文字记录,并为每段视频提供了2到3句的摘要,旨在激发潜在观众的兴趣。选择300小时版本而非2000小时版本,是因为音频模态信息仅适用于300小时的子集。

The dataset is divided into the training, validation and test sets. The training set consists of 13,168 videos totaling 298.2 hours. The validation set consists of 150 videos totaling 3.2 hours, and the test set consists of 175 videos totaling 3.7 hours. A more detailed description of the dataset has been given by Sanabria et al. (2018). For our experiments, we took 12,798 videos for the training set, 520 videos for the validation set and 127 videos for the test set.

数据集被划分为训练集、验证集和测试集。训练集包含13,168个视频,总计298.2小时;验证集包含150个视频,总计3.2小时;测试集包含175个视频,总计3.7小时。Sanabria等人 (2018) 对该数据集进行了更详细的描述。在我们的实验中,训练集使用了12,798个视频,验证集520个,测试集127个。

2.2 Modalities

2.2 模态

We use the following three inputs corresponding to the three different modalities used:

我们使用以下三种输入,分别对应三种不同的模态:

• Audio: We use the concatenation of 40- dimensional Kaldi (Povey et al., 2011) filter bank features from 16kHz raw audio using a time window of $25\mathrm{ms}$ with 10ms frame shift and the 3-dimensional pitch features extracted from the dataset to obtain the final sequence of 43-dimensional audio features. • Text: We use the transcripts corresponding to each video. All texts are normalized and lower-cased. • Video: We use a 2048-dimensional feature vector per group of 16 frames, which is extracted from the videos using a ResNeXt-101 3D CNN trained to recognize 400 different actions (Hara et al., 2018). This results in a sequence of feature vectors per video.

• 音频:我们使用Kaldi (Povey等人,2011) 从16kHz原始音频中提取的40维滤波器组特征,采用25ms时间窗口和10ms帧移,并与数据集中提取的3维音高特征拼接,最终得到43维音频特征序列。
• 文本:我们使用与每个视频对应的转录文本。所有文本均经过标准化处理并转为小写。
• 视频:我们使用ResNeXt-101 3D CNN (Hara等人,2018) 从视频中提取的每16帧一组2048维特征向量,该模型训练用于识别400种不同动作。最终每个视频生成一个特征向量序列。

2.3 Multimodal Abstract ive Sum mari z ation with Trimodal Hierarchical Attention

2.3 基于三模态层次化注意力的多模态摘要生成

Figure 1 shows the architecture of our Multimodal Abstract ive Sum mari z ation with Trimodal Hierarchical Attention (MAST) model. The model consists of three components - Modality Encoders, Trimodal Hierarchical Attention Layer and the Trimodal Decoder.

图 1: 展示了我们的多模态抽象摘要模型MAST (Multimodal Abstractive Summarization with Trimodal Hierarchical Attention) 的架构。该模型包含三个组件 - 模态编码器 (Modality Encoders) 、三模态分层注意力层 (Trimodal Hierarchical Attention Layer) 和三模态解码器 (Trimodal Decoder) 。


Figure 1: Multimodal Abstract ive Sum mari z ation with Trimodal Hierarchical Attention (MAST) architecture: MAST is a sequence to sequence model that uses information from all three modalities – audio, text and video. The modality information is encoded using Modality Encoders, followed by a Trimodal Hierarchical Attention Layer, which combines this information using a three-level hierarchical attention approach. It attends to two pairs of modalities $(\delta)$ (Audio-Text and VideoText) followed by the modality in each pair ( $\beta$ and $\gamma$ ), followed by the individual features within each modality $(\alpha)$ . The decoder utilizes this combination of modalities to generate the output over the vocabulary.

图 1: 基于三模态分层注意力机制的多模态抽象摘要 (MAST) 架构:MAST 是一种序列到序列模型,利用音频、文本和视频三种模态的信息。模态信息通过模态编码器进行编码,随后经过三模态分层注意力层,该层采用三级分层注意力机制整合信息。首先关注两对模态组合 $(\delta)$ (音频-文本和视频-文本),其次关注每对模态中的单个模态 $(\beta$ 和 $\gamma)$,最后关注各模态内部特征 $(\alpha)$。解码器利用这种多模态组合在词汇表上生成输出。

2.3.1 Modality Encoders

2.3.1 模态编码器

The text is embedded with an embedding layer and encoded using a bidirectional GRU encoder. The audio and video features are encoded using bidirectional LSTM encoders. This gives us the individual output encoding corresponding to all modalities at each encoder timestep. The tokens $t_{i}^{(k)}$ corresponding to modality $k$ are encoded using the corresponding modality encoders and produce a sequence of hidden states $h_{i}^{(k)}$ for each encoder time step $(i)$ .

文本通过嵌入层进行嵌入,并使用双向GRU编码器进行编码。音频和视频特征则通过双向LSTM编码器进行编码。这使我们在每个编码器时间步获得所有模态对应的独立输出编码。模态$k$对应的token $t_{i}^{(k)}$通过相应的模态编码器进行编码,并为每个编码器时间步$(i)$生成一系列隐藏状态$h_{i}^{(k)}$。

2.3.2 Trimodal Hierarchical Attention Layer

2.3.2 三模态分层注意力层

Where $s_{i}$ is the decoder hidden state at $i$ -th decoder timestep, h(j $h_{j}^{(k)}$ is the encoder hidden state at $j$ -th encoder timestep, $N_{k}$ is the number of encoder timesteps for the $k$ -th modality and ei(jk) is attention energy corresponding to them. $W_{a}$ and $U_{a}$ are trainable projection matrices, $v_{a}$ is a weight vector and $b_{a t t}$ is the bias term.

其中 $s_{i}$ 是解码器在第 $i$ 个时间步的隐藏状态,$h_{j}^{(k)}$ 是编码器在第 $j$ 个时间步的隐藏状态,$N_{k}$ 是第 $k$ 种模态的编码器时间步数,$e_{i}(j k)$ 是它们对应的注意力能量。$W_{a}$ 和 $U_{a}$ 是可训练的投影矩阵,$v_{a}$ 是权重向量,$b_{a t t}$ 是偏置项。

We now look at two different strategies of combining information from the modalities. The first is a simple extension of the hierarchical attention combination. The second is the strategy used in MAST, which combines modalities using three levels of hierarchical attention.

我们现在来看两种结合多模态信息的不同策略。第一种是层次化注意力组合的简单扩展。第二种是MAST中采用的策略,它通过三层层次化注意力来融合多模态信息。

  1. TrimodalH2: To obtain our first baseline model (TrimodalH2), with 2 level attention hierarchy, the context vectors for all three modalities are combined using a second layer of attention mechanism and its context vector is computed separately by using hierarchical attention combination as in Libovicky and Helcl (2017):
  2. TrimodalH2: 为了获得我们的第一个基线模型 (TrimodalH2) ,采用2级注意力层级结构,所有三种模态的上下文向量通过第二层注意力机制进行组合,并按照 Libovicky 和 Helcl (2017) 提出的分层注意力组合方式分别计算其上下文向量:

$$
\begin{array}{c}{{e_{i}^{(k)}=v_{b}^{T}\mathrm{tanh}(W_{b}s_{i}+U_{b}^{(k)}c_{i}^{(k)})}}\ {{\eta_{i}^{(k)}=\mathrm{softmax}(e_{i}^{(k)})}}\ {{c_{i}=\displaystyle\sum_{k\in{\mathrm{audio},\mathrm{text},\mathrm{video}}}}}\end{array}
$$

$$
\begin{array}{c}{{e_{i}^{(k)}=v_{b}^{T}\mathrm{tanh}(W_{b}s_{i}+U_{b}^{(k)}c_{i}^{(k)})}}\ {{\eta_{i}^{(k)}=\mathrm{softmax}(e_{i}^{(k)})}}\ {{c_{i}=\displaystyle\sum_{k\in{\mathrm{audio},\mathrm{text},\mathrm{video}}}}}\end{array}
$$

where $\eta^{(k)}$ is the hierarchical attention distribution over the modalities, $c_{i}^{(k)}$ is the context vector of the $k$ -th modality encoder, $v_{b}$ and $W_{b}$ are shared parameters across modalities, and U b( $U_{b}^{(k)}$ and U c(k) are modality-specific projection matrices.

其中 $\eta^{(k)}$ 是模态上的分层注意力分布,$c_{i}^{(k)}$ 是第 $k$ 个模态编码器的上下文向量,$v_{b}$ 和 $W_{b}$ 是跨模态共享参数,$U_{b}^{(k)}$ 和 $U_{c}^{(k)}$ 是模态特定的投影矩阵。

  1. MAST: To obtain our MAST model, the context vectors for audio-text and text-video are combined using a second layer of hierarchical attention mechanisms ( $\beta$ and $\gamma$ ) and their context vectors are computed separately. These context-vectors are then combined using the third hierarchical attention mechanism $(\delta)$ .
  2. MAST: 为获得MAST模型,音频-文本和文本-视频的上下文向量通过第二层分层注意力机制($\beta$和$\gamma$)进行组合,并分别计算它们的上下文向量。随后,这些上下文向量通过第三层分层注意力机制$(\delta)$进行融合。

$$
e_{i}^{(k)}=v_{d}^{T}\mathrm{tanh}(W_{d}s_{i}+U_{d}^{(k)}c_{i}^{(k)})
$$

$$
e_{i}^{(k)}=v_{d}^{T}\mathrm{tanh}(W_{d}s_{i}+U_{d}^{(k)}c_{i}^{(k)})
$$

$$
\beta_{i}^{(k)}=\mathrm{softmax}(e_{i}^{(k)})
$$

$$
\beta_{i}^{(k)}=\mathrm{softmax}(e_{i}^{(k)})
$$

$$
d_{i}^{(1)}=\sum_{k\in{\mathrm{audio},\mathrm{text}}}\beta_{i}^{(k)}U_{e}^{(k)}c_{i}^{(k)}
$$

$$
d_{i}^{(1)}=\sum_{k\in{\mathrm{audio},\mathrm{text}}}\beta_{i}^{(k)}U_{e}^{(k)}c_{i}^{(k)}
$$

2. Video-Text:

2. 视频-文本:

$$
\begin{array}{c}{{e_{i}^{(k)}=v_{f}^{T}\mathrm{tanh}(W_{f}s_{i}+U_{f}^{(k)}c_{i}^{(k)})}}\ {{\gamma_{i}^{(k)}=\mathrm{softmax}(e_{i}^{(k)})}}\ {{d_{i}^{(2)}=\displaystyle\sum_{k\in{\mathrm{video,text}}}\gamma_{i}^{(k)}U_{g}^{(k)}c_{i}^{(k)}}}\end{array}
$$

$$
\begin{array}{c}{{e_{i}^{(k)}=v_{f}^{T}\mathrm{tanh}(W_{f}s_{i}+U_{f}^{(k)}c_{i}^{(k)})}}\ {{\gamma_{i}^{(k)}=\mathrm{softmax}(e_{i}^{(k)})}}\ {{d_{i}^{(2)}=\displaystyle\sum_{k\in{\mathrm{video,text}}}\gamma_{i}^{(k)}U_{g}^{(k)}c_{i}^{(k)}}}\end{array}
$$

where $d_{i}^{(l)}$ , $l\in$ {audio-text, video-text} is the context vector obtained for the corresponding pair-wise modality combination.

其中 $d_{i}^{(l)}$ ( $l\in$ {audio-text, video-text} ) 是对应成对模态组合获得的上下文向量。

Finally, these audio-text and video-text context vectors are combined using the third and final attention layer $(\delta)$ . With this trimodal hierarchical atten- tion architecture, we combine the textual modality twice with the other two modalities in a pair-wise manner, and this allows the model to pay more attention to the textual modality while incorporating the benefits of the other two modalities.

最后,这些音频-文本和视频-文本上下文向量通过第三个也是最后一个注意力层 $(\delta)$ 进行组合。借助这种三模态分层注意力架构,我们以两两配对的方式将文本模态与其他两种模态进行了两次结合,这使得模型在融入其他两种模态优势的同时,能够更加关注文本模态。

$$
e_{i}^{(l)}=v_{h}^{T}\mathrm{tanh}(W_{g}s_{i}+U_{h}^{(l)}d_{i}^{(l)})
$$

$$
e_{i}^{(l)}=v_{h}^{T}\mathrm{tanh}(W_{g}s_{i}+U_{h}^{(l)}d_{i}^{(l)})
$$

$$
\delta_{i}^{(l)}=\mathrm{softmax}(e_{i}^{(l)})
$$

$$
\delta_{i}^{(l)}=\mathrm{softmax}(e_{i}^{(l)})
$$

$$
c_{i}^{f}=\sum\delta_{i}^{(l)}U_{m}^{(l)}d_{i}^{(l)}
$$

$$
c_{i}^{f}=\sum\delta_{i}^{(l)}U_{m}^{(l)}d_{i}^{(l)}
$$

where $c_{i}^{f}$ is the final context vector at $i$ -th decoder timestep.

其中 $c_{i}^{f}$ 是第 $i$ 个解码器时间步的最终上下文向量。

2.3.3 Trimodal Decoder

2.3.3 三模态解码器

We use a GRU-based conditional decoder (Firat and Cho, 2016) to generate the final vocabulary distribution at each timestep. At each timestep, the decoder has the aggregate information from all the modalities. The trimodal decoder focuses on the modality combination, followed by the individual modality, then focuses on the particular information inside that modality. Finally, it uses this information along with information from previous timesteps, which is passed on to two linear layers to generate the next word from the vocabulary.

我们采用基于GRU的条件解码器 (Firat and Cho, 2016) 在每个时间步生成最终的词汇分布。解码器在每个时间步都聚合了来自所有模态的信息。三模态解码器首先关注模态组合,其次是单个模态,最后聚焦于该模态内的特定信息。最终,解码器将这些信息与先前时间步的信息结合,传递给两个线性层以生成词汇表中的下一个词。

3 Experiments

3 实验

We train Trimodal Hierarchical Attention (MAST) and TrimodalH2 models on the 300h version of the

我们在300小时版本的语料上训练了Trimodal Hierarchical Attention (MAST)和TrimodalH2模型

How2 dataset, using all three modalities. We also train Hierarchical Attention models considering Audio-Text and Video-Text modalities, as well as simple Seq2Seq models with attention for each modality individually as baselines. As observed by Palaskar et al. (2019), the Pointer Generator model (See et al., 2017) does not perform as well as Seq2Seq models on this dataset, hence we do not use that as a baseline in our experiments. We consider another transformer-based baseline for the text modality, BertSumAbs (Liu and Lapata, 2019).

How2数据集,使用全部三种模态。我们还训练了考虑音频-文本和视频-文本模态的分层注意力模型,以及针对每种模态单独使用带注意力的简单Seq2Seq模型作为基线。如Palaskar等人 (2019) 所观察到的,指针生成器模型 (See等人, 2017) 在该数据集上表现不如Seq2Seq模型,因此我们未将其作为实验基线。针对文本模态,我们考虑了另一种基于Transformer的基线模型BertSumAbs (Liu和Lapata, 2019)。

For all our experiments (except for the BerSumAbs baseline), we use the nmtpytorch toolkit (Caglayan et al., 2017). The source and the target vocabulary consists of 49,329 words on which we train our word embeddings. We use the NLL loss and the Adam optimizer (Kingma and Ba, 2014) with learning rate 0.0004 and trained the models for 50 epochs. We generate our summaries using beam search with a beam size of 5, and then evaluate them using the ROUGE metric (Lin, 2004) and the Content F1 metric (Palaskar et al., 2019).

在我们所有的实验中(除BerSumAbs基线外), 我们使用了nmtpytorch工具包(Caglayan et al., 2017)。源语言和目标语言的词汇表包含49,329个单词, 我们在此基础上训练词嵌入。我们使用负对数似然(NLL)损失函数和Adam优化器(Kingma and Ba, 2014), 学习率设为0.0004, 模型训练50个epoch。我们使用束搜索(beam size=5)生成摘要, 然后使用ROUGE指标(Lin, 2004)和Content F1指标(Palaskar et al., 2019)进行评估。

In our experiments, the text is embedded with an embedding layer of size 256 and then encoded using a bidirectional GRU encoder (Cho et al., 2014) with a hidden layer of size 128, which gives us a 256-dimensional output encoding corresponding to the text at each timestep. The audio and video frames are encoded using bidirectional LSTM encoders (Hochreiter and Schmid huber, 1997) with a hidden layer of size 128, which gives a 256- dimensional output encoding corresponding to the audio and video features at each timestep. Finally, the GRU-based conditional decoder uses a hidden layer of size 128 followed by two linear layers which transform the decoder output to generate the final output vocabulary distribution.

在我们的实验中,文本通过一个大小为256的嵌入层进行嵌入,然后使用隐藏层大小为128的双向GRU编码器 (Cho et al., 2014) 进行编码,这为我们在每个时间步生成一个256维的文本输出编码。音频和视频帧则通过隐藏层大小为128的双向LSTM编码器 (Hochreiter and Schmidhuber, 1997) 进行编码,为每个时间步的音频和视频特征生成256维的输出编码。最后,基于GRU的条件解码器使用一个大小为128的隐藏层,后接两个线性层,将解码器输出转换为最终的输出词汇分布。

To improve generalization of our model, we use two dropout layers within the Text Encoder and one dropout layer on the output of the conditional decoder, all with a probability of 0.35. We also use implicit regular iz ation by using early stopping mechanism on the validation loss with a patience of 40 epochs.

为了提高模型的泛化能力,我们在文本编码器中使用了两个dropout层,并在条件解码器输出端添加了一个dropout层,所有dropout概率均为0.35。同时采用早停机制对验证损失进行隐式正则化,耐心值设为40个epoch。

3.1 Challenges of using audio modality

3.1 音频模态的使用挑战

The first challenge comes with obtaining a good representation of the audio modality that adds value beyond the text modality for the task of text sum mari z ation. As found by Mohamed (2014), DNN acoustic models prefer features that smoothly change both in time and frequency, like the log mel-frequency spectral coefficients (MFSC), to the de correlated mel-frequency cepstral coefficients (MFCC). MFSC features make it easier for DNNs to discover linear relations as well as higher order causes of the input data, leading to better overall system performance. Hence we do not consider MFCC features in our experiments and use the filter bank features instead.

第一个挑战在于如何获取音频模态的良好表征,使其在文本摘要任务中能提供超越文本模态的价值。Mohamed (2014) 研究发现,DNN声学模型更青睐在时间和频率上平滑变化的特征(如对数梅尔频谱系数 MFSC),而非去相关的梅尔频率倒谱系数 (MFCC)。MFSC特征使DNN更容易发现输入数据的线性关系及高阶因果关系,从而提升整体系统性能。因此我们在实验中未采用MFCC特征,转而使用滤波器组特征。

The second challenge arises due to the larger number of parameters that a model needs when handling the audio information. The number of parameters in the Video-Text baseline is 16.95 million as compared to 32.08 million when we add audio. This is because of the high number of input timesteps in the audio modality encoder, which makes learning trickier and more time-consuming.

第二个挑战源于模型处理音频信息时需要更多的参数。Video-Text基线模型的参数量为1695万,而加入音频后参数量增至3208万。这是由于音频模态编码器的高输入时间步数导致的,这使得学习过程更加棘手且耗时。

To demonstrate these challenges, as an experiment, we group the audio features across input timesteps into bins with an average of 30 consecutive timesteps and train our MAST model. This makes the number of audio timesteps comparable to the number of video and text timesteps. While we observe an improvement in computational efficiency, it achieves a lower performance than the baseline Video-Text model as described in Table 2 (MAST-Binned). We also train Audio only and Audio-Text models which fail to beat the Text only baseline. We observe that the generated summaries of the Audio only model are similar and repetitive, indicating that the model failed to learn useful information relevant to the task of text sum mari z ation.

为了验证这些挑战,我们进行了一项实验:将输入时间步的音频特征按每30个连续时间步为一组进行分箱处理,并训练我们的MAST模型。这使得音频时间步数量与视频和文本时间步数量相当。虽然计算效率有所提升,但其性能低于表2所述的基准视频-文本模型(MAST-Binned)。我们还训练了纯音频和音频-文本模型,但均未能超越纯文本基准。观察到纯音频模型生成的摘要内容相似且重复,表明该模型未能学习到与文本摘要任务相关的有效信息。

4 Results and Discussion

4 结果与讨论

Table 2: Results for different configurations. MAST outperforms all baseline models in terms of ROUGE scores, and obtains a higher Content-F1 score than all baselines while obtaining a score close to the TrimodalH2 model.

表 2: 不同配置的结果。MAST 在 ROUGE 分数上优于所有基线模型,并且在获得接近 TrimodalH2 模型分数的同时,获得了比所有基线更高的 Content-F1 分数。

模型名称 ROUGE 1 ROUGE 2 ROUGE L Content F1
Text Only 46.01 25.16 39.98 33.45
BertSumAbs 29.68 11.74 22.58 31.53
VideoOnly 39.23 19.82 34.17 27.06
AudioOnly 29.16 12.36 28.86 26.65
Audio-Text 34.56 15.22 31.63 28.36
Video-Text 48.40 27.97 42.23 32.89

4.1 Preliminaries

4.1 预备知识

Our results are given in Table 2. To demonstrate the contribution of various modalities towards the output summary, we experiment with the three modalities taken individually as well as in combination. Text only, Video only and the Audio only are attention-based S2S models (Bahdanau et al., 2014) with their respective modality features taken as encoder inputs. To situate the efficacy of the encoderdecoder architecture for our task, we use the BertSumAbs (Liu and Lapata, 2019) as a BERT based baseline for abstract ive text sum mari z ation. AudioText and the Video-Text are S2S models with hierarchical attention layer. The Video-Text model as presented by Palaskar et al. (2019) has been compared on the 300h version instead of the 2000h version of the dataset because the audio modality is only available in the former. TrimodalH2 model, adds the audio modality in the second-level of hierarchical attention. MAST-Binned model groups the features of the audio modality for computational efficiency. These models show alternative methods for utilizing audio modality information.

我们的结果如表2所示。为验证不同模态对输出摘要的贡献,我们分别对三种模态单独及组合进行实验。"仅文本"、"仅视频"和"仅音频"都是基于注意力机制的序列到序列(S2S)模型(Bahdanau等人,2014),各自以对应模态特征作为编码器输入。为验证编码器-解码器架构在本任务中的有效性,我们使用BertSumAbs(Liu和Lapata,2019)作为基于BERT的生成式文本摘要基线。AudioText和Video-Text是带有分层注意力层的S2S模型。由于音频模态仅在前者可用,我们采用Palaskar等人(2019)提出的Video-Text模型在300小时版本数据集上进行对比(而非2000小时版本)。TrimodalH2模型在第二级分层注意力中加入了音频模态。MAST-Binned模型为提升计算效率对音频模态特征进行分组处理。这些模型展示了利用音频模态信息的替代方法。

We evaluate our models with the ROUGE metric (Lin, 2004) and the Content F1 metric (Palaskar et al., 2019). The Content F1 metric is the F1 score of the content words in the summaries based on a monolingual alignment. It is calculated using the METEOR toolkit (Denkowski and Lavie, 2011) by setting zero weight to function words $(\delta)$ , equal weights to Precision and Recall $(\alpha)$ , and no cross-over penalty $(\gamma)$ for generated words. Additionally, a set of catchphrases like the words - in, this, free, video, learn, how, tips, expert - which appear in most summaries and act like function words instead of content words are removed from the reference and hypothesis summaries as a postprocessing step. It ignores the fluency of the output, but gives an estimate of the amount of useful content words the model is able to capture in the output.

我们使用ROUGE指标 (Lin, 2004) 和Content F1指标 (Palaskar et al., 2019) 评估模型性能。Content F1指标是基于单语对齐的摘要内容词F1分数,通过METEOR工具包 (Denkowski and Lavie, 2011) 计算得出:设置功能词权重为零 $(\delta)$ ,精确率和召回率权重相等 $(\alpha)$ ,且不对生成词施加交叉惩罚 $(\gamma)$ 。后处理阶段会从参考摘要和假设摘要中移除高频短语(如in/this/free/video/learn/how/tips/expert等兼具功能词特性的常见词)。该指标虽忽略输出流畅度,但能有效衡量模型在输出中捕获有用内容词的能力。

4.2 Discussion

4.2 讨论

As observed from the scores for the Text Only model, the text modality contains the most amount of information relevant to the final summary, followed by the video and the audio modalities. The scores obtained by combining the audio-text and video-text modalities also indicate the same. The transformer-based model, BertSumAbs, fails to perform well because of the smaller amount of text data available to fine-tune the model.

从纯文本(Text Only)模型的得分可以看出,文本模态包含与最终摘要最相关的信息量,其次是视频和音频模态。结合音频-文本和视频-文本模态获得的分数也表明了这一点。基于Transformer的模型BertSumAbs由于可用于微调模型的文本数据量较少而表现不佳。


Figure 2: Distribution of the duration of videos (in seconds) in the test set.

图 2: 测试集中视频时长(以秒为单位)的分布情况。

We also observe that combining the text and audio modalities leads to a lower ROUGE score than the Text Only model, which indicates that the plain hierarchical attention model fails