[论文翻译]Point-JEPA:一种用于点云自监督学习的联合嵌入预测架构


原文地址:https://arxiv.org/pdf/2404.16432v5


Point-JEPA: A Joint Embedding Predictive Architecture for Self-Supervised Learning on Point Cloud

Point-JEPA:一种用于点云自监督学习的联合嵌入预测架构

Abstract

摘要

Recent advancements in self-supervised learning in the point cloud domain have demonstrated significant potential. However, these methods often suffer from drawbacks such as lengthy pre-training time, the necessity of reconstruction in the input space, and the necessity of additional modalities. In order to address these issues, we introduce PointJEPA, a joint embedding predictive architecture designed specifically for point cloud data. To this end, we introduce a sequencer that orders point cloud patch embeddings to efficiently compute and utilize their proximity based on their indices during target and context selection. The sequencer also allows shared computations of the patch embeddings’ proximity between context and target selection, further improving the efficiency. Experimentally, our method demonstrates state-of-the-art performance while avoiding the reconstruction in the input space or additional modality. In particular, Point-JEPA attains a classification accuracy of \mathbf{93.7}\pm\mathbf{0.2~%} for linear SVM on ModelNet40 surpassing all other self-supervised models. Moreover, Point-JEPA also establishes new state-of-the-art performance levels across all four few-shot learning evaluation frameworks. The code is available at https://github.com/Ayumu-JS/Point-JEPA

点云领域自监督学习的最新进展展示了显著的潜力。然而,这些方法通常存在一些缺点,例如预训练时间长、需要在输入空间中进行重建以及需要额外的模态。为了解决这些问题,我们引入了 PointJEPA,这是一种专门为点云数据设计的联合嵌入预测架构。为此,我们引入了一个排序器,用于对点云补丁嵌入进行排序,以便在目标和上下文选择期间基于它们的索引高效计算和利用它们的邻近性。排序器还允许在上下文和目标选择之间共享补丁嵌入邻近性的计算,从而进一步提高效率。实验表明,我们的方法在避免输入空间重建或额外模态的情况下展示了最先进的性能。特别是,Point-JEPA 在 ModelNet40 上的线性 SVM 分类准确率达到 \mathbf{93.7}\pm\mathbf{0.2~%},超越了所有其他自监督模型。此外,Point-JEPA 在所有四个少样本学习评估框架中也建立了新的最先进性能水平。代码可在 https://github.com/Ayumu-JS/Point-JEPA 获取。

1. Introduction

1. 引言

The growing accessibility of affordable consumer-grade 3D sensors has led to the widespread adoption of point clouds as a preferred data representation for capturing realworld environments. However, the existing point cloud understanding approaches [14] mostly rely on supervised training which requires time-consuming and labor-intensive manual annotations to semantically understand 3D environments. On the other hand, self-supervised learning (SSL) is an evolving paradigm that allows the model to learn a meaningful representation from unlabeled data. The success of self-supervised learning in advancing natural language processing and 2D computer vision has motivated its application in the point cloud domain for achieving state-of-the-art results on downstream tasks [17]. However, our initial inve stig ation found that they require a significant amount of pre-training time as shown in Fig. 1. The slow pre-training process can pose constraints in scaling to a larger dataset or complex and deeper models, hindering the key advantage of self-supervised learning; its capacity to learn a strong represent ation from a vast amount of data.

随着价格适中的消费级 3D 传感器日益普及,点云作为一种捕捉现实环境的优选数据表示方式得到了广泛应用。然而,现有的点云理解方法 [14] 大多依赖于监督训练,这需要耗时且劳动密集型的手动标注来语义理解 3D 环境。另一方面,自监督学习 (SSL) 是一种不断发展的范式,它允许模型从未标注的数据中学习有意义的表示。自监督学习在推动自然语言处理和 2D 计算机视觉方面的成功,激励了其在点云领域的应用,以在下游任务中实现最先进的结果 [17]。然而,我们的初步调查发现,它们需要大量的预训练时间,如图 1 所示。缓慢的预训练过程可能会对扩展到更大的数据集或更复杂和更深的模型造成限制,阻碍了自监督学习的关键优势;即从大量数据中学习强大表示的能力。


ModelNet40 Linear Evaluation vs Pre-train Hours Figure 1. ModelNet40 Linear Evaluation. Pre-training time on NVIDIA RTX A5500 and overall accuracy with SVM linear classifier on ModelNet40 [36]. We compare PointJEPA with previous methods utilizing standard Transformer architecture.

图 1: ModelNet40 线性评估。在 NVIDIA RTX A5500 上的预训练时间以及在 ModelNet40 [36] 上使用 SVM 线性分类器的总体准确率。我们将 PointJEPA 与之前使用标准 Transformer 架构的方法进行了比较。

The successful implementations of Joint-Embedding Predictive Architecture (JEPA) [18] for pre-training a model [2,3] show JEPA’s ability to learn strong semantic representations without the need for fine-tuning. The idea behind JEPA is to learn a representation by predicting the embedding of the input signal, called target, from another compatible input signal, called context, with the help of a predictor network. This allows learning in the representation space instead of the input space, leading to efficient learning. Inspired by I-JEPA [2], we aim to apply Joint-Embedding Predictive Architecture in the point cloud domain, which introduces a promising direction for self-supervised learning in the point cloud understanding. However, unlike images, unordered point clouds pose a unique challenge to applying JEPA due to their inherently permutation-invariant nature. The unordered nature of the point cloud data makes the context and target selection of the data difficult and inefficient, especially if we aim to select spatially contiguous patches similar to I-JEPA [2]. Therefore, we introduce Point-JEPA to overcome this challenge, while utilizing the full potential of Joint-Embedding Predictive Architecture for computational efficiency. Point-JEPA utilizes an efficient greedy sequencer to assist the model in selecting patch embeddings that are spatially adjacent. Our empirical studies indicate that Point-JEPA efficiently learns semantic representations from point cloud data with faster pre-training times compared to alternative state-of-the-art methods. The specific contributions of this work are as follows.

联合嵌入预测架构 (Joint-Embedding Predictive Architecture, JEPA) [18] 在模型预训练中的成功实现 [2,3] 展示了 JEPA 无需微调即可学习强语义表示的能力。JEPA 的核心思想是通过预测输入信号的嵌入(称为目标)来学习表示,该嵌入是从另一个兼容的输入信号(称为上下文)中借助预测网络生成的。这使得学习可以在表示空间而非输入空间中进行,从而实现高效学习。受 I-JEPA [2] 的启发,我们旨在将联合嵌入预测架构应用于点云领域,这为点云理解中的自监督学习引入了一个有前景的方向。然而,与图像不同,无序的点云由于其固有的排列不变性,给 JEPA 的应用带来了独特的挑战。点云数据的无序性使得数据的上下文和目标选择变得困难且低效,尤其是当我们希望选择类似于 I-JEPA [2] 的空间连续补丁时。因此,我们引入了 Point-JEPA 来克服这一挑战,同时充分利用联合嵌入预测架构的计算效率。Point-JEPA 利用一种高效的贪心排序器来帮助模型选择空间相邻的补丁嵌入。我们的实证研究表明,与现有的最先进方法相比,Point-JEPA 能够从点云数据中高效地学习语义表示,并且预训练时间更短。本文的具体贡献如下。

• We present a Joint-Embedding Predictive Architecture, called Point-JEPA, for point cloud selfsupervised learning. Point-JEPA efficiently learns a strong representation from point cloud data without reconstruction in the input space or additional modality. • We propose a point cloud patch embedding ordering method for Joint-Embedding Predictive Architecture, utilizing a greedy algorithm based on spatial proximity.

• 我们提出了一种名为 Point-JEPA 的联合嵌入预测架构 (Joint-Embedding Predictive Architecture),用于点云自监督学习。Point-JEPA 无需在输入空间进行重建或依赖额外模态,即可高效地从点云数据中学习到强表征。
• 我们提出了一种基于空间邻近度的贪心算法,用于联合嵌入预测架构的点云块嵌入排序方法。

2. Related Work

2. 相关工作

Recent advancements in self-supervised learning in 2D computer vision [2, 5, 8, 13, 15, 17, 23, 35] and natural language processing [4, 9, 28, 29] have inspired its application to point cloud processing. In this section, we review existing self-supervised learning methods in the point cloud domain and explore the concept of the Joint Embedding Predictive Architecture.

近年来,自监督学习在二维计算机视觉 [2, 5, 8, 13, 15, 17, 23, 35] 和自然语言处理 [4, 9, 28, 29] 领域的进展激发了其在点云处理中的应用。本节中,我们回顾了点云领域现有的自监督学习方法,并探讨了联合嵌入预测架构 (Joint Embedding Predictive Architecture) 的概念。

2.1. Generative Learning

2.1. 生成式学习 (Generative Learning)

Generative models learn representations by reconstructing the input signal within the same input space, capturing its underlying structure and features. For example, based on a popular NLP model Bert [9], Point-Bert [37] introduces generative pre training to the point cloud using a discrete variation al auto encoder to transform the point cloud into discrete point tokens. However, this model heavily relies on data augmentation and suffers from the early leakage of location information, which makes pre-training steps relatively complicated and computationally expensive. To overcome this issue, Point-MAE [25] presents a lightweight, flexible, and computationally efficient solution by bypassing the token iz ation and reconstructing the masked point cloud patches. On the other hand, PointGPT [7] introduces an auto-regressive learning paradigm in the point cloud domain. Such generative pre-training in the point cloud domain learns a robust representation; however, it suffers from computational inefficiency due to the reconstruction of the data in the input space.

生成模型通过在相同的输入空间内重建输入信号来学习表示,捕捉其底层结构和特征。例如,基于流行的 NLP 模型 Bert [9],Point-Bert [37] 引入了生成式预训练,使用离散变分自编码器将点云转换为离散的点 token。然而,该模型严重依赖数据增强,并且存在位置信息早期泄露的问题,这使得预训练步骤相对复杂且计算成本高。为了解决这个问题,Point-MAE [25] 提出了一种轻量级、灵活且计算高效的解决方案,通过绕过 token 化并重建被掩码的点云补丁。另一方面,PointGPT [7] 在点云领域引入了自回归学习范式。这种在点云领域的生成式预训练学习到了鲁棒的表示;然而,由于在输入空间中重建数据,它存在计算效率低下的问题。

2.2. Joint Embedding Architecture

2.2. 联合嵌入架构

Joint Embedding Architectures map the input data into a shared latent space that contains similar embeddings for semantically similar instances. These networks utilize regu lari z ation strategies such as contrastive learning and selfdistillation to learn meaningful representations. Contrastive learning generates embeddings that are close for positive pairs and distant for negative pairs. For example, Du et al. [10] introduces a contrastive learning approach that treats different parts of the same object as negative and positive examples. Unlike contrastive learning, a self-distillation network employs two identical networks with distinct parameters, commonly known as the teacher and student, where the teacher guides the student by providing its predictions as targets. For example, in Point2Vec [38], the teacher receives the patches of point clouds while the student receives a subset of these patches. Further, a shallow Transformer learns meaningful and robust representation from the masked positional information and the con- textual i zed embedding from the partial-view input. In selfdistillation networks, no reconstruction in the input space results in faster training than in generative models. However, as shown in Fig. 1, it requires longer training to learn a meaningful representation. On the other hand, contrastive learning excels in performance; however, its effectiveness highly depends on the careful selection of positive and negative samples as well as the data augmentation techniques to ensure transferable representations for downstream tasks [17].

联合嵌入架构将输入数据映射到一个共享的潜在空间,该空间包含语义相似实例的相似嵌入。这些网络利用对比学习和自蒸馏等正则化策略来学习有意义的表示。对比学习生成的嵌入在正样本对中接近,在负样本对中远离。例如,Du 等人 [10] 提出了一种对比学习方法,将同一对象的不同部分视为负样本和正样本。与对比学习不同,自蒸馏网络使用两个具有不同参数的相同网络,通常称为教师和学生,其中教师通过提供其预测作为目标来指导学生。例如,在 Point2Vec [38] 中,教师接收点云的补丁,而学生接收这些补丁的子集。此外,一个浅层 Transformer 从掩码位置信息和部分视图输入的上下文化嵌入中学习有意义且鲁棒的表示。在自蒸馏网络中,输入空间中没有重建,因此训练速度比生成模型更快。然而,如图 1 所示,学习有意义的表示需要更长的训练时间。另一方面,对比学习在性能上表现出色;然而,其有效性高度依赖于正负样本的精心选择以及数据增强技术,以确保下游任务的可迁移表示 [17]。

2.3. Joint Embedding Predictive Architecture (JEPA)

2.3. 联合嵌入预测架构 (Joint Embedding Predictive Architecture, JEPA)

A self-supervised learning architecture JEPA [24] learns representation using a predictor network that predicts one set of encoded signal y based on another set of encoded signal x , along with a conditional variable z that controls the prediction. In the predictor network, encoders initially process both the target and the context signals to represent them in embedding space. Conceptually JEPA has a large similarity to generative models which are designed to reconstruct masked part of the input. However, instead of directly operating on the input space, JEPA makes predictions in the embedding space. This allows the elimination of unnecessary input details to focus on learning meaningful representations. As a result, the model can abstract and represent the data more efficiently. Closely related to our work, the specific application of the architecture in the image domain can be seen in I-JEPA [2]. In this work, the context signal is created by selecting a block of patches while the target signals are created by sampling the rest of unselected patches. Experiments show faster convergence of I-JEPA to learn highly semantic representation. Therefore, to ensure faster pre training in self-supervised learning for point cloud understanding, we aim to apply JEPA on point cloud data.

一种自监督学习架构 JEPA [24] 使用预测网络来学习表示,该网络基于另一组编码信号 x 以及控制预测的条件变量 z 来预测一组编码信号 y。在预测网络中,编码器首先处理目标和上下文信号,以在嵌入空间中表示它们。从概念上讲,JEPA 与生成模型有很大的相似性,生成模型旨在重建输入的掩码部分。然而,JEPA 不是在输入空间上直接操作,而是在嵌入空间中进行预测。这使得可以消除不必要的输入细节,专注于学习有意义的表示。因此,模型可以更高效地抽象和表示数据。与我们工作密切相关的是,该架构在图像领域的具体应用可以在 I-JEPA [2] 中看到。在这项工作中,上下文信号通过选择一组图像块创建,而目标信号则通过采样其余未选择的图像块创建。实验表明,I-JEPA 在学习高度语义表示时收敛速度更快。因此,为了确保在点云理解的自监督学习中更快地进行预训练,我们旨在将 JEPA 应用于点云数据。


Figure 2. Schematic renderings illustrating the process of creating embeddings. (Top left), point encoder (bottom left) and PointJEPA (right). Point cloud patches are generated using furthest point sampling (FPS) [11] and k -nearest neighbor (KNN) methods, a mini PointNet (Point Encoder) is used to generate patch embeddings which are subsequently fed to the JEPA architecture. We use standard Transformer [34] architecture for context (fθ) and target (f¯θ) encoders as well as predictor (pϕ) .

图 2: 展示嵌入创建过程的示意图。(左上)点编码器(左下)和 PointJEPA(右)。点云补丁使用最远点采样 (FPS) [11] 和 k 近邻 (KNN) 方法生成,一个迷你 PointNet(点编码器)用于生成补丁嵌入,随后将其输入到 JEPA 架构中。我们使用标准的 Transformer [34] 架构作为上下文 (fθ) 和目标 (f¯θ) 编码器以及预测器 (pϕ)

3. Point-JEPA Architecture

3. Point-JEPA 架构

In this section, we describe our JEPA architecture for pre training in the point cloud domain. Our goal is to adapt JEPA [18] for use with point cloud data while evaluating its performance and implementation efficiency. The overall framework, as shown in Fig. 2, first converts the point cloud to a set of patch embeddings, then a greedy sequencer arranges them in sequence based on their spatial proximity to each other, and Joint-Embedding Predictive Architecture is applied to the ordered patch embeddings. We utilize a mini PointNet [26] architecture for encoding the grouped points and standard Transformer [34] architecture for the context and target encoder as well as the predictor. It is important to note that our JEPA architecture operates on embeddings instead of patches in order to share the point encoder network between context and target encoder for efficiency similar to

在本节中,我们描述了用于点云领域预训练的 JEPA 架构。我们的目标是调整 JEPA [18] 以适用于点云数据,同时评估其性能和实现效率。整体框架如图 2 所示,首先将点云转换为一组 patch 嵌入,然后贪婪排序器根据它们之间的空间邻近性将它们按顺序排列,并将联合嵌入预测架构(Joint-Embedding Predictive Architecture)应用于有序的 patch 嵌入。我们使用 mini PointNet [26] 架构对分组点进行编码,并使用标准 Transformer [34] 架构作为上下文和目标编码器以及预测器。需要注意的是,我们的 JEPA 架构在嵌入而不是 patch 上运行,以便在上下文和目标编码器之间共享点编码器网络以提高效率,类似于

Point2Vec [38].

Point2Vec [38]。

3.1. Point Cloud Patch Embedding

3.1. 点云块嵌入

Building on previous studies that utilize the standard Transformer architecture for point cloud objects [7, 25, 38], we adopt a process that embeds groups of points into patch embeddings. Given a point cloud object, PR3 consisting of n points, c center points are first sampled using the farthest point sampling [11]. Then we employ the k -nearest neighbors algorithm to identify and select the k closest points surrounding each of the c designated center points. These point patches are then normalized by subtracting the center point coordinates from the coordinates of the points in the patches. This allows the separation between local structural information and the positional information of the patches. In order to embed the local point patches, we utilize a mini PointNet [26] architecture. This ensures that the patch embedding remains invariant to any permutations of data feeding order of points within the patch. Specifically, this PointNet contains two sets of a shared multi-layer perceptron (MLP) and a max-pooling layer as shown in Fig. 2. First, a shared MLP maps each point into a feature vector. Then, we apply max-pooling to these vectors and concatenate the result back to the original feature vector. Subsequently, a shared MLP processes these concatenated vectors, followed by a max-pooling operation to generate a set of patch embeddings T of P .

基于先前利用标准Transformer架构处理点云对象的研究[7, 25, 38],我们采用了一种将点组嵌入为补丁嵌入的过程。给定一个点云对象PR3,由n个点组成,首先使用最远点采样[11]采样c个中心点。然后,我们采用k近邻算法识别并选择每个c个指定中心点周围的k个最近点。这些点补丁通过从补丁中的点坐标减去中心点坐标进行归一化。这使得局部结构信息与补丁的位置信息得以分离。为了嵌入局部点补丁,我们使用了一个小型PointNet[26]架构。这确保了补丁嵌入对补丁内点数据输入顺序的任何排列保持不变。具体来说,这个PointNet包含两组共享的多层感知器(MLP)和一个最大池化层,如图2所示。首先,一个共享的MLP将每个点映射到一个特征向量。然后,我们对这些向量应用最大池化,并将结果连接回原始特征向量。随后,一个共享的MLP处理这些连接后的向量,接着进行最大池化操作,生成一组补丁嵌入T

Algorithm 1: Greedy sequencer strategy

算法 1: 贪婪序列策略

输入: 一组补丁嵌入 (patch emb.), T = {t1, t2, ..., tr} 输出: 一组空间连续的补丁嵌入, T'
1 找到初始补丁嵌入 t = minCoordSum(T);
2 设置 T' = {t};
3 T = T \ {t};
4 初始化 prev_t = t;
5 while T ≠ 0 do
6 设置 closest = ∞;
7 for t ∈ T do
8 dis =
9 if dis ≤ closest then
10 设置 closest = dis;
11 设置 index = i;
12 end
13 end T' = T' ∪ {t_index};
14 T = T \ {t_index};
15 prev_t = t_index;
16 end

3.2. Greedy Sequencer

3.2. 贪婪序列器

Due to the previously observed benefits of having targets and context clustered together in close spatial proximity, a configuration known as a block in I-JEPA [2], we aim to sample patch embeddings that are spatially close to each other. As previously mentioned, point cloud data is permutation invariant to data feeding order, which implies that even if the indices of patch embeddings are sequential, they might not be spatially adjacent. Furthermore, our approach involves the selection of M spatially contiguous blocks of encoded embeddings as the target while ensuring that the context does not include the patch embeddings corresponding to these embedding vectors (details in the next paragraph). To address these challenges, we apply a greedy sequencer that is applied after producing patch embeddings similar to z-ordering in PointGPT [7]. This sequencer orders patch embeddings based on their associated center points ( Algorithm 1). The process is initiated by selecting the center point with the lowest sum of coordinates (minCoorSum(T)) as the starting point, along with its associated patch embedding. In each subsequent step, the center point closest to the one previously chosen and its associated patch embedding are selected. This is iterated until the sequencer visits all of the center points. The resulting arrangement of patch embeddings (T=t1,t2,...,tr) is in a sequence where contiguous elements are also spatially contiguous in most cases. This allows the shared computation of spatial proximity between context and target selection. At the same time, this also allows simpler implementation for context and target selection. It is worth noting, however, that selecting two adjacent patch embedding indices in this setting does not always guarantee spatial proximity; there might be a gap between them. While this is true, the experiment results show that this iterative ordering is effective enough in our JEPA architecture. Additionally, this rather simple approach is parallel i zed across batches, making it more efficient for large datasets or point clouds. Not only can we compute pairwise distances for all points within a batch in a single forward pass but also run the iterative process of simultaneously selecting the next closest point across the batch. This enables faster computation on modern GPUs, ensuring that the nearest points are selected efficiently while keeping the algorithm feasible even for large batch sizes.

由于之前观察到的目标和上下文在空间上紧密聚集在一起的好处,即 I-JEPA [2] 中称为块 (block) 的配置,我们的目标是采样在空间上彼此接近的补丁嵌入 (patch embeddings)。如前所述,点云数据对数据输入顺序是排列不变的,这意味着即使补丁嵌入的索引是连续的,它们在空间上也可能不相邻。此外,我们的方法涉及选择 M 个空间连续的编码嵌入块作为目标,同时确保上下文不包括与这些嵌入向量对应的补丁嵌入(详见下一段)。为了解决这些挑战,我们应用了一种贪婪排序器 (greedy sequencer),该排序器在生成补丁嵌入后应用,类似于 PointGPT [7] 中的 z-ordering。该排序器根据补丁嵌入的相关中心点对它们进行排序(算法 1)。该过程通过选择坐标和最小的中心点 (minCoordSum(T)) 作为起点,并选择其相关的补丁嵌入。在随后的每一步中,选择与之前选择的中心点最接近的中心点及其相关的补丁嵌入。这个过程会迭代进行,直到排序器访问所有中心点。最终得到的补丁嵌入排列 (T=t1,t2,...,tr) 是一个序列,其中连续的元素在大多数情况下也是空间上连续的。这使得上下文和目标选择之间的空间接近性计算可以共享。同时,这也使得上下文和目标选择的实现更加简单。然而,值得注意的是,在这种设置下选择两个相邻的补丁嵌入索引并不总是保证空间上的接近性;它们之间可能存在间隙。尽管如此,实验结果表明,这种迭代排序在我们的 JEPA 架构中是足够有效的。此外,这种相对简单的方法在批次之间是并行化的,使其在处理大型数据集或点云时更加高效。我们不仅可以在一次前向传递中计算批次内所有点的成对距离,还可以同时跨批次运行选择下一个最近点的迭代过程。这使得在现代 GPU 上能够更快地进行计算,确保高效选择最近点,同时即使在大批量情况下也能保持算法的可行性。

3.3. JEPA Components

3.3. JEPA 组件

Context and Target Targets in Point-JEPA can be considered patch-level representations of the point cloud object, which the predictor aims to predict. As illustrated in Fig. 2, the target encoder initially encodes the patch embedding conventionally, and we randomly select M possibly overlapping target blocks, which are sets of adjacent encoded embeddings. Specifically, we define $\boldsymbol{y}(i)={y_{j}}{j\in B{i}}asthei^{\mathrm{th}}targetrepresentationblock,whereB_{i}denotesthesetofmaskindicesforthei^{\mathrm{th}}block.Here,wedenotetheencodedembeddingsasy={y_{1},y_{2},...y_{n}},wherey_{k}=f_{\overline{{\theta}}}(t_{k}^{'})istherepresentationassociatedwiththek^{t h}centrepoint.Itisimportanttonotethatmaskingforthetargetisappliedtotheembeddingvectorsderivedfromthepatchembeddingsthathavepassedthroughthetransformerencoderf_{\overline{{\theta}}}$ . This ensures a high semantic level for the target representations.

上下文与目标
在 Point-JEPA 中,目标可以被视为点云对象的块级表示,预测器旨在预测这些目标。如图 2 所示,目标编码器首先对块嵌入进行常规编码,然后我们随机选择 M 个可能重叠的目标块,这些块是相邻编码嵌入的集合。具体来说,我们将 $\boldsymbol{y}(i)={y_{j}}{j\in B{i}}i^{\mathrm{th}}B_{i}i^{\mathrm{th}}y={y_{1},y_{2},...y_{n}}y_{k}=f_{\overline{{\theta}}}(t_{k}^{'})k^{t h}Transformerf_{\overline{{\theta}}}$ 的块嵌入生成的嵌入向量。这确保了目标表示的高语义水平。


Figure 3. Context and Targets. We visualize the corresponding grouped points of context and target blocks. Here, we use (0.15, 0.2) for the target selection ratio and (0.4, 0.75) for the context selection ratio.

图 3: 上下文与目标。我们可视化了上下文和目标块对应的分组点。这里,我们使用 (0.15, 0.2) 作为目标选择比例,使用 (0.4, 0.75) 作为上下文选择比例。

Context, on the other hand, is the representation of the point cloud object which is passed to the predictor to facilitate the reconstruction of target blocks. Unlike target blocks, masking is applied to the patch embeddings during the creation of context blocks. This allows the contextencoder fθ to represent the uncertainties in the object’s represent at ions when certain parts are masked. Specifically, we first select a subset of patch embeddings ˆTT that are spatially contiguous. These selected embeddings are then fed to the context-encoder fθ to generate a context block $x={x_{j}}{j\in B{x}}.Topreventtriviallearning,wealsoensurethattheindicesofpatchembeddingschosenforthecontextdifferfromthoseforthetargets.Furthermore,thepatchembeddingsT^{\prime}$ are sorted such that embeddings that are adjacent in the data feeding order are also spatially close. This organization simplifies the selection of contiguous target and context blocks, despite the aforementioned complexities of point cloud data representation.

另一方面,上下文是传递给预测器的点云对象的表示,以促进目标块的重建。与目标块不同,在创建上下文块时,会对补丁嵌入应用掩码。这使得上下文编码器 fθ 能够在某些部分被掩码时表示对象表示中的不确定性。具体来说,我们首先选择一个空间上连续的补丁嵌入子集 ˆTT。然后将这些选定的嵌入输入到上下文编码器 fθ 中,以生成一个上下文块 $x={x_{j}}{j\in B{x}}T^{\prime}$ 被排序,使得在数据输入顺序中相邻的嵌入在空间上也接近。这种组织简化了连续目标和上下文块的选择,尽管点云数据表示存在上述复杂性。

Predictor The task of predictor pϕ given targets y and context x is analogous to the task of supervised prediction. Given a context as input x along with a certain condition, it aims to predict the target representations y . Here, the condition involves the mask tokens, which are created from shared learned parameters, as well as positional encoding, created from centre points associated with the targets. That is

预测器任务 pϕ 在给定目标 y 和上下文 x 的情况下,类似于监督预测任务。给定一个上下文作为输入 x 以及某个条件,它旨在预测目标表示 y。这里的条件包括从共享学习参数创建的掩码 Token,以及与目标相关的中心点创建的位置编码。

图片.png

where pϕ(,) denotes the predictor and ${m_{j}}{j\in B{i}}$ denotes the mask token created from shared learnable parameter and positional encoding created from centre points.

其中 pϕ(,) 表示预测器,${m_{j}}{j\in B{i}}$ 表示由共享可学习参数创建的掩码 Token 以及由中心点创建的位置编码。

Loss Because the predictor’s task is to predict the representation produced by the target encoder, the loss can be defined to minimize the disagreement between the predictions and targets as follows.

损失
由于预测器的任务是预测目标编码器生成的表示,因此可以定义损失以最小化预测和目标之间的差异,如下所示。

图片.png

Similar to Point2Vec [38], we utilize Smooth L1 loss to measure the dissimilarity between each corresponding element of the target and predicted embedding because of its ability to be less sensitive to the outliers.

类似于 Point2Vec [38],我们利用 Smooth L1 损失来衡量目标和预测嵌入中每个对应元素之间的差异,因为它对异常值不太敏感。

Parameter Update We utilize AdamW [20] optimizer with cosine learning decay [19]. The target encoder and context encoder initially have identical parameters. The context encoder’s parameters are updated via back prop agation, while the target encoders’ parameters are updated us- ing the exponential moving average of the context encoder parameters, that is ¯θτ¯θ+(1¯τ)θ where τ[0,1] denotes the decay rate.

参数更新
我们使用 AdamW [20] 优化器并结合余弦学习率衰减 [19]。目标编码器和上下文编码器最初具有相同的参数。上下文编码器的参数通过反向传播进行更新,而目标编码器的参数则使用上下文编码器参数的指数移动平均值进行更新,即 ¯θτ¯θ+(1¯τ)θ,其中 τ[0,1] 表示衰减率。

4. Experiments

4. 实验

In this section, we first describe the details of selfsupervised pre-training. Further, we compare the performance of the learned representation to the state-of-the-art self-supervised learning methods in the point cloud domain that utilizes the ShapeNet [6] dataset in pre-training. We specifically evaluate the learned representation using linear probing, end-to-end fine-tuning, and a few-shot learning setting. Finally, ablation experiments are conducted to gain insights into the principal characteristics of Point-JEPA.

在本节中,我们首先描述了自监督预训练的细节。接着,我们将学习到的表示与点云领域中最先进的自监督学习方法进行比较,这些方法在预训练中使用了 ShapeNet [6] 数据集。我们特别通过线性探测、端到端微调和少样本学习设置来评估学习到的表示。最后,我们进行了消融实验,以深入了解 Point-JEPA 的主要特性。

Table 1. Linear Evaluation on ModelNet40 [36]. We compare Point-JEPA to self-supervised learning methods pre-trained on ShapeNet [6]. * signifies the linear evaluation results as indicated in [39, 40]. ** signifies results with Transformer backbone.

表 1. ModelNet40 [36] 上的线性评估。我们将 Point-JEPA 与在 ShapeNet [6] 上预训练的自监督学习方法进行了比较。* 表示 [39, 40] 中所示的线性评估结果。** 表示使用 Transformer 骨干网络的结果。

方法 总体准确率
Latent-GAN [1] 85.7
3D-PointCapsNet [41] 88.9
STRL [16] 90.3
Sauder et al. [30] 90.6
Fu et al. [12] 91.4
Transformer-OcCo* [37] 89.6
Point-BERT* [37] 87.4
Point-MAE* [25] 90.0
Point-M2AE [39] 92.9
CluRender** [21] 93.2
Point-JEPA (Ours) 93.7±0.2

4.1. Self-Supervised Pre-training

4.1 自监督预训练

We pre-train our model on training set of ShapeNet [6] following the previous studies utilizing the standard Transformer [34] architecture such as Point-MAE [25], PointM2AE [39], PointGPT [7], and Point2Vec [38] for the fair comparison. The dataset consists of 41952 3D point cloud instances created from synthetic 3D meshes from 55 categories. The standard Transformer [34] architecture is used for the context and target encoder as well as the predictor. During pre-training, we set the number of center points to 64 and the group size to 32. The point token iz ation is applied to the input point cloud containing 1024 points per object. We set the depth of the Transformer in the context and target encoder to 12 with the embedding width of 384 and 6 heads. For the predictor, we use the narrower dimension of 192 following I-JEPA [2]. The depth of the predictor is set to 6, and the number of heads is set to 6. Our experiments are conducted on NVIDIA RTX A5500 and NVIDIA A100 SXM4. We note that our method only takes 7.5 hours on RTX A5500 for pre training (see Fig. 1) which is less than half of that of PointM2AE [39] and about 60 of Point2Vec [38] time requirement for pre training. Adhering to the standard convention, we use overall accuracy for classification tasks and mean IoU for part segmentation tasks.

我们在ShapeNet [6] 的训练集上对模型进行了预训练,遵循了之前的研究,使用了标准的Transformer [34] 架构,如Point-MAE [25]、PointM2AE [39]、PointGPT [7] 和Point2Vec [38],以确保公平比较。该数据集由55个类别的合成3D网格生成的41952个3D点云实例组成。标准的Transformer [34] 架构用于上下文和目标编码器以及预测器。在预训练期间,我们将中心点的数量设置为64,组大小设置为32。点Token化应用于每个对象包含1024个点的输入点云。我们将上下文和目标编码器中的Transformer深度设置为12,嵌入宽度为384,头数为6。对于预测器,我们遵循I-JEPA [2] 使用较窄的维度192。预测器的深度设置为6,头数设置为6。我们的实验在NVIDIA RTX A5500和NVIDIA A100 SXM4上进行。我们注意到,我们的方法在RTX A5500上仅需7.5小时进行预训练(见图1),这不到PointM2AE [39] 的一半,约为Point2Vec [38] 预训练时间要求的60%。遵循标准惯例,我们使用整体准确率进行分类任务,使用平均IoU进行部分分割任务。

Table 2. End-to-End Classification. Overall accuracy on ModelNet40 [36] and ScanObjNN [32] with end-to-end fine-tuning. We specifically compare our methods to the method utilizing standard Transformer architecture pre-trained on ShapeNet [6] with only point cloud (no additional modality).

表 2: 端到端分类。在 ModelNet40 [36] 和 ScanObjNN [32] 上进行端到端微调的整体准确率。我们特别将我们的方法与仅在 ShapeNet [6] 上预训练的标准 Transformer 架构(仅使用点云,无额外模态)进行了比较。

方法 参考文献 整体准确率 ModelNet40 ScanObjNN
#Points +Voting -Voting #Points OBJ-BG OBJ-ONLY OBJ-T50-RS
Point-BERT [37] CVPR2022 1k 93.2 92.7 1k 87.4 88.1 83.1
Point-MAE [25] ECCV2022 1k 93.8 93.2 2k 90.0 88.3 85.2
Point-M2AE [39] NeurIPS2022 1k 94.0 93.4 2k 91.2 88.8 86.4
Point2Vec [38] GCPR2023 1k 94.8 94.7 2k 91.2 90.4 87.5
PointGPT-S [7] NeurIPS2023 1k 94.0 2k 91.6 90.0 86.9
PointDiff [42] CVPR2024 1k 93.2 91.9 87.6
Point-JEPA (Ours) 1k 94.1±0.1 93.8±0.2 2k 92.9 ±0.4 90.1 ± 0.2 86.6 ± 0.3

4.2. Downstream Tasks

4.2. 下游任务

In this section, we report the performance of the learned representation on several downstream tasks. Following the previous studies [7, 37–39], we report the overall accuracy as a percentage. To account for variability across independent runs, we report the mean accuracy and standard deviation from 10 independent runs with different seeds, unless specified otherwise.

在本节中,我们报告了学习到的表示在多个下游任务中的表现。根据之前的研究 [7, 37–39],我们以百分比形式报告总体准确率。为了考虑独立运行之间的变异性,我们报告了10次不同种子独立运行的平均准确率和标准差,除非另有说明。

Linear Probing. After pre-training on ShapeNet [6], we evaluate the learned representation via linear probing on ModelNet40 [36]. Specifically, we freeze the learned context encoder and place the SVM classifier on top. To enforce invariance to geometric transformation, we utilize max and mean pooling on the output of the Transformer encoder [25, 38]. We utilize 1024 points for both training and test sets. As shown in Tab. 1, our method achieves state-of-theart accuracy, providing +0.8 performance gain, showing the robustness of the learned representation.

线性探测。在 ShapeNet [6] 上进行预训练后,我们通过在 ModelNet40 [36] 上进行线性探测来评估学习到的表示。具体来说,我们冻结学习到的上下文编码器,并在其顶部放置 SVM 分类器。为了增强对几何变换的不变性,我们在 Transformer 编码器 [25, 38] 的输出上使用最大池化和平均池化。我们在训练集和测试集上均使用 1024 个点。如表 1 所示,我们的方法达到了最先进的准确率,提供了 +0.8 的性能提升,展示了学习到的表示的鲁棒性。

Few-Shot Learning We conduct few-shot learning experiments on Modelnet40 [36] in m -way, n -shot setting as shown in Tab. 3. Specifically, we randomly sample n instances of m classes for training and select 20 instances of m support classes for evaluation. For one setting, we run 10 independent runs under a fixed random seed on 10 different folds of dataset and report mean and standard deviation of overall accuracy. As shown in Tab. 3, our method exceeds the performance of current state-of-the-art in all settings and yields a +1.1 improvement in the most difficult 10-way 10-shot setting, showing the robustness of the learned representation of Point-JEPA, especially in the low-data regime.

少样本学习

我们在 Modelnet40 [36] 上进行了少样本学习实验,采用 mn 样本的设置,如表 3 所示。具体来说,我们随机抽取 m 个类别的 n 个实例进行训练,并选择 m 个支持类别的 20 个实例进行评估。对于每个设置,我们在固定随机种子下对数据集的 10 个不同折叠进行 10 次独立运行,并报告整体准确率的均值和标准差。如表 3 所示,我们的方法在所有设置中都超过了当前最先进方法的性能,并在最具挑战性的 10 类 10 样本设置中实现了 +1.1 的提升,展示了 Point-JEPA 学习到的表示的鲁棒性,尤其是在低数据量情况下。

End-to-end Fine-Tuning We also investigate the performance of the learned representation via end-to-end finetuning. After pre-training, we utilize the context encoder to extract the max and average pooled outputs. These outputs are then processed by a three-layer MLP for classification tasks. This class-specific head as well as the context encoder is fine-tuned end-to-end on ModelNet40 [36] and S can Object NN [32]. ModelNet40 consists of 12311 synthetic 3D objects from 40 distinct categories, while ScanObjectNN contains objects from 15 classes, each containing 2902 unique instances collected by scanning real-world objects. For ModelNet40, we sub-sample 1024 points per object and sample 64 center points with 32 points in each point patch. On the other hand, we utilize all 2048 points for the ScanObjNN dataset and sample 128 center points with 32 nearest neig