• [论文翻译]ResNet:图像识别中的深度残差学习

    更深的神经网络更难训练。我们提出了一种残差学习框架来减轻网络训练,这些网络比以前使用的网络更深。我们明确地将层变为学习关于层输入的残差函数,而不是学习未参考的函数。我们提供了全面的经验证据说明这些残差网络很容易优化,并可以显著增加深度来提高准确性。在ImageNet数据集上我们评估了深度高达152层的残差网络——比VGG[40]深8倍但仍具有较低的复杂度。这些残差网络的集合在ImageNet测试集上取得了`3.57%`的错误率。这个结果在ILSVRC 2015分类任务上赢得了第一名。我们也在CIFAR-10上分析了100层和1000层的残差网络。
  • [论文翻译]CARN: 快速、准确、轻量级的超分辨率级联残差网络

    近年来,深度学习方法已经成功地应用于单图像超分辨率任务。尽管深度学习方法有很好的性能,但由于计算量大的要求,它们很难适用于实际任务。 本文通过提出一种精确、轻量级的图像超分辨率深度网络来解决这一问题。 详细地说,我们在残差网络上设计了一个级联机制的架构。我们也展示了多个不同的级联残差模型来验证算法的有效性。大量实验表明,即使用很少的参数和操作,我们的模型也能达到与最先进的方法相当的性能。
公告

AI千集是一个人工智能信息平台。
它是由一群AI算法工程师搭建的。
希望能帮助从业者快速跟踪学术动态
希望能帮助初学者提高算法应用能力
来千集,跟上先行者的脚步
扫一扫,加入我们
公众号

题灵是连通AI学研和就业的桥梁
登陆小程序
获取千集AI课程和论文
挑战万道AI面试题

题灵

码涯是学习代码基础知识的开源书库
登陆小程序
一键开启免费学习代码编程之旅

码涯