[论文翻译]KOALAnet:基于核函数自适应局部调整算法的盲超分辨率
盲超分辨率(SR)方法旨在从包含未知降级的低分辨率图像产生高质量的高分辨率图像。然而,自然图像含有各种类型和量的模糊:有些可能是由于相机的固有降解特性,但有些可能是有意的,用于美学目的(例如Bokeh效应)。在后者的情况下,SR方法非常困难,以解开模糊以移除,并尽可能离开。在本文中,我们提出了一种基于SR特征的内核型自适应局部调整(Koala)的新型盲人SR框架,称为Koalanet,其共同学习空间变型劣化和恢复核,以适应空间变体模糊特性在真实的图像中。我们的Koalanet优于由随机降解获得的合成LR图像的最近盲目SR方法,我们进一步表明,KOALAnet有效地处理混合失焦和聚焦区域的图像。