[论文翻译]Generative Adversarial Networks 生成对抗网络
我们提出了一个新的框架,用于通过对抗过程估算生成模型,在该框架中,我们同时训练两个模型:生成模型 G 捕获数据分布和判别模型 D估计样本来是否来自训练数据的可能性 。G 的训练过程是使 D 犯错误的概率最大化。这个框架相当于最小最大化的双人博弈。在任意函数 G 和 D 的空间中,存在唯一解,其中,G 恢复训练数据分布,D 处在1/2处。在 G 和 D 由多层感知机定义的情况下,整个系统可以通过反向传播进行训练。在训练或者样本生成期间,不需要任何马尔可夫链或展开的近似推理网络。实验通过对生成的样本进行定性和定量评估,证明了该框架的潜力。