[论文翻译]基于角点的区域提议检测多方向文本
以往的场景文本检测方法通常依赖于手动定义的滑动窗口。本研究提出了一种直观的两阶段基于区域的方法,无需任何关于文本形状的先验知识即可检测多方向文本。在第一阶段,我们通过检测并连接角点而非滑动一组预设锚框来估计文本实例的可能位置。四边形候选框具有几何自适应性,使本方法能够应对各种文本长宽比和方向。在第二阶段,我们设计了一种名为双RoI池化 (Dual-RoI Pooling) 的新型池化层,该层将数据增强嵌入区域子网络中,从而对这些候选框进行更鲁棒的分类和回归。公开基准测试的实验结果证实,所提方法能够达到与最先进方法相当的性能。代码公开于 https://github.com/xhzdeng/crpn。