[论文翻译]STYLEGAN2: 分析和改善 StyleGAN 的图像质量 Analyzing and Improving the Image Quality of StyleGAN
StyleGAN在数据驱动的无条件生成图像建模中达到了最先进的结果。我们将揭露和分析其出现一些特征伪影的原因,并提出模型架构和训练方法方面的改进以解决这些问题。特别需要注意的是,我们重新设计了生成器归一化方法,重新审视了渐进式增长架构,并对生成器施加了正则化,使得从潜在矢量到图像的映射中得到良好质量的图像。除了改善图像质量外,使用路径长度调节器还带来了额外的好处,即生成器变得非常容易反转。这使得可以可靠地检测图像是否由特定网络生成。我们进一步对生成器是如何充分应用输出分辨率,并如何确定网络容量问题进行了可视化,从而激励我们训练更大的模型,以进一步提高质量。总体而言,我们改进的模型在现有的分布式指标质量和感知的图像质量方面都刷新了无条件图像建模的最先进技术指标。