• [论文翻译]基于高温精炼与背景抑制的细粒度视觉分类

    摘要—细粒度视觉分类由于类别间高度相似且类内数据差异显著而极具挑战性。现有方法主要聚焦于定位类别间细微差异并增强判别性特征,但背景信息同样重要——它能提示模型哪些特征对分类无用甚至有害,而过度依赖细微特征的模型可能忽视全局特征与上下文信息。本文提出"高温精炼与背景抑制"(HERBS)网络,包含高温精炼模块和背景抑制模块:前者通过多尺度特征图精炼促进多样化特征学习,使模型自适应选择合适特征尺度;后者基于分类置信度分割前景/背景,在低置信区域抑制特征值同时增强判别性特征。
创作中心
开启你的AI千集创作之旅
发布首篇内容,开通创作中心 快来成为AI千集创作者吧~
公告

AI千集是一款聚焦健康管理的智能平台
在这里您可以获得本平台自训练的
健康管理大模型服务
和小伙伴一起玩转AI,做自己的AI机器人
来AI千集,赋能健康快人一步
扫一扫,快速获取解决方案与报价
立即咨询

千集助理
连接科研与大众健康的桥梁
让科学健康管理融入日常
登陆小程序
AI数字人随身守护
健康管理更高效
生活品质悄然升级

千集助理