[论文翻译]基于概率比率割优化的深度聚类
我们提出了一种通过将二元分配建模为随机变量来优化图比率割的新方法。我们给出了期望比率割的上界及其梯度的无偏估计,以便在线学习分配变量的参数。我们的概率方法(PRCut)产生的聚类效果优于组合问题的瑞利商松弛、其在线学习扩展以及几种广泛使用的方法。我们证明,PRCut聚类与相似性度量高度一致,并且在提供基于标签的相似性时,其表现可与监督分类器相媲美。这一新方法能够利用现成的自监督表示来实现有竞争力的性能,并可作为评估这些表示质量的方法。