• 给生物学家的机器学习指南

    过去几十年,生物数据集的规模与复杂性大幅增长,这使得机器学习越来越多地用于为潜在生物过程构建信息与预测模型。所有机器学习技术都在让模型与数据相匹配;然而,具体的方法多种多样,乍一看似乎令人眼花缭乱。对于不同类型的生物数据,该如何选择特定的机器学习技术? 2021年9月,发表在Nature Reviews Molecular Cell Biology上的综述文章“给生物学家的机器学习指南”,向读者简要介绍了一些关键的机器学习技术:既包括分类、回归、聚类模型等传统机器学习方法,也包括最近开发和广泛使用的涉及深度神经网络的技术。本文还记录了一些最佳做法与入门要点,并展望了机器学习应用于生物学的一些最令人兴奋的前景。
公告

AI千集是一个人工智能信息平台。
它是由一群AI算法工程师搭建的。
希望能帮助从业者快速跟踪学术动态
希望能帮助初学者提高算法应用能力
来千集,跟上先行者的脚步
扫一扫,加入我们
公众号

AI千集是连通AI学研和就业的桥梁
登陆小程序
获取千集AI课程和论文
挑战万道AI面试题

小程序