中文语音语料(含百度网盘链接)

AI数据  收藏
0 / 1033

中文语音语料

语料简介

zhvoice语料由8个开源数据集,经过降噪和去除静音处理而成,说话人约3200个,音频约900小时,文本约113万条,共有约1300万字。

zhvoice语料比较原始数据而言,更加清晰和自然,减少了噪声的干扰,减少了因说话人说话不连贯造成的不自然。

zhvoice语料包含文本、语音和说话人3个方面的信息,可适用于多种语音相关的任务。

zhvoice语料由智浪淘沙清洗和处理。

处理方法

  • 用python的工具模块aukit处理音频,降噪和去除静音。
pip install aukit

from aukit import remove_noise, remove_silence
  • 用python的工具模块phkit处理文本,文本正则化和汉字转拼音。
pip install phkit

from phkit import text_to_sequence, pinyin

应用场景

  • 用于语音克隆模型,可直接用于githup的语音克隆项目zhrtvc
  • 用于语音合成模型,用标贝开源的中文标准女声音频zhbznsyp数据集,或者筛选音质较好,和目标声音相似的说话人语音及其文本。
  • 用于声码器模型,即由语音特征转为语音信号的模型。用语音数据,可结合aukit的音频转频谱。
from aukit import linear_spectrogram, mel_spectrogram, world_spectrogram
  • 用于语音编码器模型,即把语音编码到预定维度的向量空间。
  • 用于声纹识别模型,用语音和对应的说话人标签。
  • 用于语音识别模型,用语音和文本,可以适当加噪声。

下载路径

百度网盘:

链接: https://pan.baidu.com/s/1uHXE2WIt0kdm_dPSej-TtA

提取码: i5b3

文件介绍

  • info:各个数据集的源数据信息,包含源数据出处、简介等。
  • text:语音语料对应的文本,包含文本、相对路径、说话人、参考拼音等信息。
  • sample:样本语音,每个说话人一个音频。
  • metadata:语料元数据,一行对应一个音频文件,每行的格式音频相对路径\t汉字文本\n
  • zh*:zh开头的是语料文件,目录结构:根目录下包含metadata.csv和语音文件目录。一个说话人对应一个子目录,音频是mp3格式。metadata.csv的数据结构和metadata的一样,记录当前数据集的信息。

统计信息

  • character_W: 字符个数,单位:万字。包括汉字、英文字母和标点符号。
  • duration_H: 语音时长,单位:小时。
  • n_audio_per_speaker:每个说话人的音频数量。
  • n_minute_per_speaker:平均每个说话人的音频总时长,单位:分钟。
  • n_speaker:说话人个数。
  • sentence_W:文本数目,单位:万条。
  • size_MB:音频占用存储空间,单位:MB。

注意:

  1. total是全部数据集合集的结果。
  2. 音频的采样率是16k。
{
    "total": {
        "character_W": 1287.0836999999997,
        "duration_H": 889.7492555555556,
        "n_audio_per_speaker": 348.30255463219453,
        "n_character_per_sentence": 11.37366465335554,
        "n_minute_per_speaker": 16.431195855134913,
        "n_second_per_audio": 2.8305039345725436,
        "n_speaker": 3249,
        "sentence_W": 113.1635,
        "size_MB": 9164.134941101074
    },
    "zhaidatatang": {
        "character_W": 233.5123,
        "duration_H": 145.47232,
        "n_audio_per_speaker": 395.4416666666667,
        "n_character_per_sentence": 9.841835078920194,
        "n_minute_per_speaker": 14.547232000000001,
        "n_second_per_audio": 2.2072381177164773,
        "n_speaker": 600,
        "sentence_W": 23.7265,
        "size_MB": 1498.3187255859375
    },
    "zhaishell": {
        "character_W": 204.0219,
        "duration_H": 142.5542,
        "n_audio_per_speaker": 354.0,
        "n_character_per_sentence": 14.40832627118644,
        "n_minute_per_speaker": 21.38313,
        "n_second_per_audio": 3.6242593220338986,
        "n_speaker": 400,
        "sentence_W": 14.16,
        "size_MB": 1468.2630157470703
    },
    "zhbznsyp": {
        "character_W": 18.3708,
        "duration_H": 10.544652222222222,
        "n_audio_per_speaker": 10000.0,
        "n_character_per_sentence": 18.3708,
        "n_minute_per_speaker": 632.6791333333333,
        "n_second_per_audio": 3.7960748,
        "n_speaker": 1,
        "sentence_W": 1.0,
        "size_MB": 108.60657119750977
    },
    "zhmagicdata": {
        "character_W": 567.2561,
        "duration_H": 406.01905,
        "n_audio_per_speaker": 563.8938053097345,
        "n_character_per_sentence": 9.891471367789634,
        "n_minute_per_speaker": 23.953926253687317,
        "n_second_per_audio": 2.548769930947897,
        "n_speaker": 1017,
        "sentence_W": 57.348,
        "size_MB": 4181.867351531982
    },
    "zhprimewords": {
        "character_W": 105.2203,
        "duration_H": 81.30301,
        "n_audio_per_speaker": 171.96621621621622,
        "n_character_per_sentence": 20.67115241051432,
        "n_minute_per_speaker": 16.480339864864863,
        "n_second_per_audio": 5.750085183293388,
        "n_speaker": 296,
        "sentence_W": 5.0902,
        "size_MB": 837.3951988220215
    },
    "zhspeechocean": {
        "character_W": 3.1078,
        "duration_H": 1.8908433333333334,
        "n_audio_per_speaker": 120.0,
        "n_character_per_sentence": 12.949166666666668,
        "n_minute_per_speaker": 5.67253,
        "n_second_per_audio": 2.836265,
        "n_speaker": 20,
        "sentence_W": 0.24,
        "size_MB": 19.475086212158203
    },
    "zhstcmds": {
        "character_W": 111.9317,
        "duration_H": 74.53628,
        "n_audio_per_speaker": 120.0,
        "n_character_per_sentence": 10.909522417153998,
        "n_minute_per_speaker": 5.230616140350877,
        "n_second_per_audio": 2.6153080701754385,
        "n_speaker": 855,
        "sentence_W": 10.26,
        "size_MB": 767.7000274658203
    },
    "zhthchs30": {
        "character_W": 43.6628,
        "duration_H": 27.4289,
        "n_audio_per_speaker": 223.13333333333333,
        "n_character_per_sentence": 32.61338512100388,
        "n_minute_per_speaker": 27.4289,
        "n_second_per_audio": 7.375563190917239,
        "n_speaker": 60,
        "sentence_W": 1.3388,
        "size_MB": 282.5089645385742
    }
}

About

Chinese voice corpus. 中文语音语料,语音更加清晰自然,包含8个开源数据集,3200个说话人,900小时语音,1300万字。

Topics

open-source voice chinese audio-data voice-cloning chinese-dataset voice-dataset audio-dataset voice-data tts-data

Resources

Readme

Releases

No releases published

Packages 0

No packages published

* Contact GitHub

来自https://github.com/KuangDD/zhvoice

zhvoice: Chinese voice corpus

tips: 中文或汉语的语言简称缩写是zh

喜欢请star!你就是superstar