ShuffleNet: An Extremely Efficient Convolutional Neural Network for Mobile Devices用于移动设备的极其高效的卷积神经网络
> 论文中英文对照合集 : https://aiqianji.com/blog/articles
Abstract
We introduce an extremely computation-efficient CNN architecture named ShuffleNet, which is designed specially for mobile devices with very limited computing power (e.g., 10-150 MFLOPs). The new architecture utilizes two new operations, pointwise group convolution and channel shuffle, to greatly reduce computation cost while maintaining accuracy. Experiments on ImageNet classification and MS COCO object detection demonstrate the superior performance of ShuffleNet over other structures, e.g. lower top-1 error (absolute 7.8%) than recent MobileNet on ImageNet classification task, under the computation budget of 40 MFLOPs. On an ARM-based mobile device, ShuffleNet achieves \sim 13 \times actual speedup over AlexNet while maintaining comparable accuracy.
摘要
我们介绍了一个名为ShuffleNet的高效的CNN架构,其专为具有非常有限的计算能力的移动设备(例如,10-150 MFLOPS)而设计。新架构利用了两个新的操作,逐点群卷积(pointwise group convolution)和通道混洗(channel shuffle),与现有先进模型相比在类似的精度下大大降低计算量。 Imagenet分类和MS Coco对象检测的实验证明了ShuffleNet在其结构上的优越性,例如,在40 MFLOPS的计算预算下,ShuffleNet在Imagenet分类任务中达到比MobileNet更低的top1错误率(7.8 %)。在基于ARM的移动设备上,Shuffleenet在和AlexNet相比,同样精度能够实现13倍加速。
.
Introduction 简介
Building deeper and larger convolutional neural networks (CNNs) is a primary trend for solving major visual recognition tasks. The most accurate CNNs usually have hundreds of layers and thousands of channels, thus requiring computation at billions of FLOPs. This report examines the opposite extreme: pursuing the best accuracy in very limited computational budgets at tens or hundreds of MFLOPs, focusing on common mobile platforms such as drones, robots, and smartphones. Note that many existing works} focus on pruning, compressing, or low-bit representing a basic" network architecture. Here we aim to explore a highly efficient basic architecture specially designed for our desired computing ranges.
构建更深和更大的卷积神经网络为主要视觉任务发展的一个主要趋势 [ 19,9,30,5,25,22 ]。最准确的卷积神经网络通常有数百层和数千个个通道 [ 9,31,29,37 ],因此需要进行数十亿次FLOP运算。本报告探讨了相反的极端情况:在非常有限的计算预算中以数十或数百个MFLOP追求最佳的准确性,重点放在无人机,机器人和电话等常见的移动平台上。针对这一问题,许多工作的重点放在对现有预训练模型的修剪、压缩或使用低精度数据表示。 [ 15,20,39,38,35,24 ]。在这里,我们的目标是探索一个高效的基础架构,专门设计了所需的计算范围。
We notice that state-of-the-art basic architectures such as Xception and ResNeXt become less efficient in extremely small networks because of the costly dense $ 1\times 1 $ convolutions. We propose using pointwise group convolutions to reduce computation complexity of $ 1\times 1 $ convolutions. To overcome the side effects brought by group convolutions, we come up with a novel channel shuffle operation to help the information flowing across feature channels. Based on the two techniques, we build a highly efficient architecture called ShuffleNet. Compared with popular structures like , for a given computation complexity budget, our ShuffleNet allows more feature map channels, which helps to encode more information and is especially critical to the performance of very small networks.
我们注意到,诸如Xception * [ 3 ]和ResNeXt * [ 37 ]之类的最新基础架构在极小的网络中效率低下,这是因为密集型1×1个卷积代价高昂。我们建议使用逐点分组卷积来降低计算复杂度。为了克服逐点分组卷积带来的副作用,我们提出了一种新颖的通道混洗操作,以帮助信息流过特征通道。基于这两种技术,我们构建了一个称为ShuffleNet的高效架构。与流行的结构等相比 [ 27,9,37 ],对于给定的计算复杂度预算,我们的ShuffleNet允许更多的功能贴图通道,这有助于编码更多的信息,是非常小的网络的性能尤其重要。
We evaluate our models on the challenging ImageNet classification and MS COCO object detection tasks. A series of controlled experiments shows the effectiveness of our design principles and the better performance over other structures. Compared with the state-of-the-art architecture MobileNet, ShuffleNet achieves superior performance by a significant margin, e.g. absolute 7.8% lower ImageNet top-1 error at level of 40 MFLOPs. We also examine the speedup on real hardware, i.e. an off-the-shelf ARM-based computing core. The ShuffleNet model achieves $ \sim $ actual speedup (theoretical speedup is 18 $ \times $ ) over AlexNet while maintaining comparable accuracy.
我们评估的挑战ImageNet分类我们的模型 [ 4,26 ]和MS COCO目标检测 [ 21 ]的任务。一系列受控实验显示了我们设计原理的有效性以及优于其他结构的性能。与最先进的架构*MobileNet * [ 12 ]相比,ShuffleNet取得了显着提高的卓越性能,例如,在40个MFLOP级别上,相对ImageNet top-1错误率降低了7.8%。
我们还研究了实际硬件(即基于ARM的现成计算核心)上的加速。该模型的ShuffleNet和AlexNet [ 19 ]相比,精度相当的情况下,达到13× 实际加速(理论加速为18×)。
Related Work 相关工作
The last few years have seen the success of deep neural networks in computer vision tasks, in which model designs play an important role. The increasing needs of running high quality deep neural networks on embedded devices encourage the study on efficient model designs. For example, GoogLeNet increases the depth of networks with much lower complexity compared to simply stacking convolution layers. SqueezeNet reduces parameters and computation significantly while maintaining accuracy. ResNet utilizes the efficient bottleneck structure to achieve impressive performance. SENet introduces an architectural unit that boosts performance at slight computation cost. Concurrent with us, a very recent work employs reinforcement learning and model search to explore efficient model designs. The proposed mobile NASNet model achieves comparable performance with our counterpart ShuffleNet model (26.0% @ 564 MFLOPs vs. 26.3% @ 524 MFLOPs for ImageNet classification error). But do not report results on extremely tiny models (e.g. complexity less than 150 MFLOPs), nor evaluate the actual inference time on mobile devices. The concept of group convolution, which was first introduced in AlexNet for distributing the model over two GPUs, has been well demonstrated its effectiveness in ResNeXt. Depthwise separable convolution proposed in Xception generalizes the ideas of separable convolutions in Inception series. Recently, MobileNet utilizes the depthwise separable convolutions and gains state-of-the-art results among lightweight models. Our work generalizes group convolution and depthwise separable convolution in a novel form.
高效的模型设计在过去几年中已经看到深层神经网络的计算机视觉任务的成功[ 19,33,25 ],在该模型的设计中发挥重要作用。在嵌入式设备上运行高质量深度神经网络的需求不断增长,这鼓励了对有效模型设计的研究[ 8 ]。例如,与简单堆叠卷积层相比,GoogLeNet [ 30 ]以低得多的复杂度增加了网络的深度。SqueezeNet [ 13 ]在保持精度的同时,显着减少了参数和计算量。RESNET [ 9,10]利用高效的瓶颈结构来实现令人印象深刻的性能。组卷积的概念应首先在AlexNet [ 19 ]中引入,以在两个GPU上分配模型,在[ 37 ]中显示了提高准确性的潜力。在Xception提出深度方向可分离卷积[ 3 ]概括可分离卷积的思想在启系列[ 31,29 ]。最近,MobileNet [ 12 ]利用深度可分离卷积并在轻量模型中获得最新结果。我们的工作以一种新颖的形式概括了分组卷积和深度可分离卷积。
To the best of our knowledge, the idea of channel shuffle operation is rarely mentioned in previous work on efficient model design, although CNN library cuda-convnet supports random sparse convolution" layer, which is equivalent to random channel shuffle followed by a group convolutional layer. Such random shuffle" operation has different purpose and been seldom exploited later. Very recently, another concurrent work also adopt this idea for a two-stage convolution. However, did not specially investigate the effectiveness of channel shuffle itself and its usage in tiny model design.
据我们所知,虽然CNN库Cuda-Convnet 支持随机稀疏卷积层,但是在高效的模型设计中,很少提到random channel shuffle。这种随机混洗往往目的也不同。最近,另一个工作也采用了两段式卷积。然而,没有特别调查随机通道混洗本身的有效性及其在微小模型设计中的用途
This direction aims to accelerate inference while preserving accuracy of a pre-trained model. Pruning network connections or channels reduces redundant connections in a pre-trained model while maintaining performance. Quantization and factorization are proposed in literature to reduce redundancy in calculations to speed up inference. Without modifying the parameters, optimized convolution algorithms implemented by FFT and other methods decrease time consumption in practice. Distilling transfers knowledge from large models into small ones, which makes training small models easier.
模型加速该方向旨在加快推理速度,同时保持预训练模型的准确性。修剪的网络连接[ 6,7 ]或信道[ 35 ]在一个预训练的模型减少冗余连接,同时保持性能。量化[ 28,24,36,40 ]和因式分解[ 20,15,17,34 ]文献中提出了一些方法来减少计算中的冗余以加速推理。而不修改参数,优化的卷积算法实现由FFT [ 23,32 ]等方法[ 2 ]在实践中减少的时间消耗。提纯[ 11 ]将知识从大型模型转移到小型模型,这使得对小型模型的训练变得更加容易。与这些方法相比,我们的方法侧重于更好的模型设计以提高性能,而不是加速或转移现有模型。
Approach 方法
Channel Shuffle for Group Convolutions 分组卷积的通道混洗
Modern convolutional neural networks usually consist of repeated building blocks with the same structure. Among them, state-of-the-art networks such as Xception and ResNeXt introduce efficient depthwise separable convolutions or group convolutions into the building blocks to strike an excellent trade-off between representation capability and computational cost. However, we notice that both designs do not fully take the $ 1\times1 $ convolutions (also called pointwise convolutions in ) into account, which require considerable complexity. For example, in ResNeXt only $ 3\times3 $ layers are equipped with group convolutions. As a result, for each residual unit in ResNeXt the pointwise convolutions occupy 93.4% multiplication-adds (cardinality = 32 as suggested in ). In tiny networks, expensive pointwise convolutions result in limited number of channels to meet the complexity constraint, which might significantly damage the accuracy. To address the issue, a straightforward solution is to apply channel sparse connections, for example group convolutions, also on $ 1\times1 $ layers. By ensuring that each convolution operates only on the corresponding input channel group, group convolution significantly reduces computation cost. However, if multiple group convolutions stack together, there is one side effect: outputs from a certain channel are only derived from a small fraction of input channels. Figchannelshuffle(a) illustrates a situation of two stacked group convolution layers.
现代卷积神经网络 [ 27,30,31,29,9,10 ]通常由具有相同结构的重复结构单元的。其中,诸如Xception [ 3 ]和ResNeXt [ 37 ]之类的最新网络将有效的深度可分离卷积或分组卷积引入到构建块中,从而在表示能力和计算成本之间取得了很好的折衷。但是,我们注意到,两种设计都不能完全采用1×1卷积来计算(在 [ 12 ]中也称为点卷积 ),这需要相当大的复杂性。例如,仅在ResNeXt [ 37 ]中3×3层配备了分组卷积。结果,对于ResNeXt中的每个残差单元,逐点卷积占据93.4%的乘积(基数= 32,如[ 37 ]中所建议 )。在小型网络中,昂贵的逐点卷积导致通道数量有限,无法满足复杂性约束,这可能会严重影响精度。
为了解决这个问题,一个简单的解决方案是在通道上应用通道稀疏连接,例如分组卷积。 1×1 层。通过确保每个卷积仅在相应的输入通道组上运行,分组卷积显着降低了计算成本。但是,如果多个组卷积堆叠在一起,则会产生一个副作用:某个通道的输出仅从一小部分输入通道派生。图 1(a)说明了两个堆叠的组卷积层的情况。显然,某个组的输出仅与该组内的输入有关。此属性阻止通道组之间的信息流并削弱表示。
图1:具有两个堆叠的组卷积的通道混洗。GConv代表组卷积。a)两个堆叠的具有相同组数的卷积层。每个输出通道仅与组中的输入通道相关。没有相声;b)当GConv2在GConv1之后从不同组获取数据时,输入和输出通道完全相关;c)与b)使用通道混洗等效的实现。
It is clear that outputs from a certain group only relate to the inputs within the group. This property blocks information flow between channel groups and weakens representation. If we allow group convolution to obtain input data from different groups (as shown in Figchannelshuffle(b)), the input and output channels will be fully related. Specifically, for the feature map generated from the previous group layer, we can first divide the channels in each group into several subgroups, then feed each group in the next layer with different subgroups. This can be efficiently and elegantly implemented by a channel shuffle operation (Figchannelshuffle(c)): suppose a convolutional layer with $ g $ groups whose output has $ g\times n $ channels; we first reshape the output channel dimension into $ (g, n) $ , transposing and then flattening it back as the input of next layer. Note that the operation still takes effect even if the two convolutions have different numbers of groups. Moreover, channel shuffle is also differentiable, which means it can be embedded into network structures for end-to-end training. Channel shuffle operation makes it possible to build more powerful structures with multiple group convolutional layers. In the next subsection we will introduce an efficient network unit with channel shuffle and group convolution.
如果我们允许组卷积从不同组中获取输入数据(如图 1(b)所示),则输入和输出通道将完全相关。具体来说,对于从上一个组层生成的特征图,我们可以先将每个组中的通道划分为几个子组,然后再将下一个层中的每个组提供给不同的子组。可以通过信道随机操作有效而优雅地实现这一点(图 1(c)):假设卷积层具有$ g $组,其输出具有$ g\times n $通道;我们首先将输出通道尺寸重新塑造成$(g, n) $,转换,然后将其变平,作为下一层的输入。请注意,即使两个卷积具有不同数量的组,该操作仍然会生效。此外,信道混洗也是可区分的,这意味着可以将其嵌入到网络结构中以进行端到端训练。
通道混洗操作使构建具有多个组卷积层的更强大的结构成为可能。在下一个小节中,我们将介绍一个具有信道混洗和分组卷积的高效网络单元。
ShuffleNet Unit ShuffleNet 单元
Taking advantage of the channel shuffle operation, we propose a novel ShuffleNet unit specially designed for small networks. We start from the design principle of bottleneck unit in Figunit(a). It is a residual block. In its residual branch, for the $ 3\times 3 $ layer, we apply a computational economical $ 3\times 3 $ depthwise convolution on the bottleneck feature map. Then, we replace the first $ 1\times 1 $ layer with pointwise group convolution followed by a channel shuffle operation, to form a ShuffleNet unit, as shown in Figunit(b). The purpose of the second pointwise group convolution is to recover the channel dimension to match the shortcut path. For simplicity, we do not apply an extra channel shuffle operation after the second pointwise layer as it results in comparable scores. The usage of batch normalization (BN) and nonlinearity is similar to , except that we do not use ReLU after depthwise convolution as suggested by . As for the case where ShuffleNet is applied with stride, we simply make two modifications (see Figunit(c)): (i) add a $ 3\times 3 $ average pooling on the shortcut path; (ii) replace the element-wise addition with channel concatenation, which makes it easy to enlarge channel dimension with little extra computation cost.
利用信道随机播放操作的优势,我们提出了一种专门为小型网络设计的新型ShuffleNet单元。我们从图 2(a)中的瓶颈单元[ 9 ]的设计原理开始 。这是一个剩余的块。在其剩余分支中,对于3×3 层,我们应用了计算经济性 3×3瓶颈特征图上的深度卷积 [ 3 ]。然后,我们替换第一个1个×1个如图2(b)所示,通过逐点分组卷积,然后进行通道混洗操作,形成一个ShuffleNet单元 。第二次逐点分组卷积的目的是恢复通道尺寸以匹配快捷方式路径。为简单起见,我们在第二个逐点层之后不应用额外的通道随机播放操作,因为它会产生可比的得分。批标准化(BN)的使用 [ 14 ]和非线性类似于 [ 9,37 ],不同的是,我们不沿深度卷积后使用RELU所建议 [ 3 ]。至于ShuffleNet跨步应用的情况,我们只需做两个修改(见图 2(c)):(i)添加一个3×3快捷路径上的平均池;(ii)用通道级联替换逐个元素的加法,这使得扩展通道尺寸变得容易,而额外的计算成本却很少。
Thanks to pointwise group convolution with channel shuffle, all components in ShuffleNet unit can be computed efficiently. Compared with ResNet (bottleneck design) and ResNeXt, our structure has less complexity under the same settings. For example, given the input size $ c\times h \times w $ and the bottleneck channels $ m $ , ResNet unit requires $ hw(2cm+9m^2) $ FLOPs and ResNeXt has $ hw(2cm+9m^2/g) $ FLOPs, while our ShuffleNet unit requires only $ hw(2cm/g+9m) $ FLOPs, where $ g $ means the number of groups for convolutions. In other words, given a computational budget, ShuffleNet can use wider feature maps. We find this is critical for small networks, as tiny networks usually have an insufficient number of channels to process the information. In addition, in ShuffleNet depthwise convolution only performs on bottleneck feature maps. Even though depthwise convolution usually has very low theoretical complexity, we find it difficult to efficiently implement on low-power mobile devices, which may result from a worse computation/memory access ratio compared with other dense operations. Such drawback is also referred in , which has a runtime library based on TensorFlow. In ShuffleNet units, we intentionally use depthwise convolution only on bottleneck in order to prevent overhead as much as possible.
借助带通道混洗的逐点分组卷积,可以高效地计算ShuffleNet单元中的所有组件。与Reset(瓶颈设计)和ResNext相比,我们的结构在相同的设置下具有更大的复杂性。例如,给定输入大小$ c\times h \times w $和瓶颈通道$ m $,resnet单元需要$ hw(2cm+9m^2) $ flops和resnext有$ hw(2cm+9m^2/g) $ flops,而我们的ShuffleNet单位只需要$ hw(2cm/g+9m) $ flops,其中$ g $表示卷积的组数。换句话说,鉴于计算预算,ShuffleNet可以使用更广泛的特征映射。我们发现这对于小型网络至关重要,因为微小的网络通常具有不足的频道来处理信息。此外,在Shufflenet中,深度卷积仅在瓶颈上执行特征映射。尽管深度卷积通常具有非常低的理论复杂性,但我们发现难以在低功率移动设备上有效地实现,这可能是由于与其他密集操作相比的更差的计算/存储器访问比率。此类缺点也参考,其具有基于TensorFlow的运行时库。在ShuffleNet单元中,我们仅在瓶颈上仅使用深度卷积,以便尽可能地防止开销。
图2: ShuffleNet单元。一)瓶颈单元 [ 9 ]与深度方向的卷积(DWConv) [ 3,12 ] ; b)具有按点分组卷积(GConv)和通道混洗的ShuffleNet单元;c)步幅= 2的ShuffleNet单元
Network Architecture 网络架构
Built on ShuffleNet units, we present the overall ShuffleNet architecture in Table arch. The proposed network is mainly composed of a stack of ShuffleNet units grouped into three stages. The first building block in each stage is applied with stride = 2. Other hyper-parameters within a stage stay the same, and for the next stage the output channels are doubled. Similar to , we set the number of bottleneck channels to 1/4 of the output channels for each ShuffleNet unit. Our intent is to provide a reference design as simple as possible, although we find that further hyper-parameter tunning might generate better results.
基于ShuffleNet单元,我们在表1中介绍了整个ShuffleNet体系结构。拟议的网络主要由ShuffleNet单元堆栈组成,分为三个阶段。每个阶段的第一个构件块的步幅=2。阶段中的其他超参数保持不变,而对于下一个阶段,输出通道将增加一倍。类似于 [ 9 ],我们将每个ShuffleNet单元的瓶颈通道数设置为输出通道的1/4。我们的目的是提供尽可能简单的参考设计,尽管我们发现进一步的超参数调整可能会产生更好的结果。
In ShuffleNet units, group number $ g $ controls the connection sparsity of pointwise convolutions. Tablearch explores different group numbers and we adapt the output channels to ensure overall computation cost roughly unchanged ( $ \sim $ 140 MFLOPs). Obviously, larger group numbers result in more output channels (thus more convolutional filters) for a given complexity constraint, which helps to encode more information, though it might also lead to degradation for an individual convolutional filter due to limited corresponding input channels.
在ShuffleNet单元中,组号$ g $控制点卷积的连接稀疏性。 下表探讨了不同的分组数,我们调整输出通道,以确保整体计算成本大致不变($\sim $ 140 MFLOPS)。显然,对于给定的复杂性约束,较大的组号导致更多的输出通道(因此更多的卷积滤波器),这有助于对更多信息进行编码,尽管由于相应的输入通道有限而可能导致单个卷积滤波器的劣化。
In Secgconv we will study the impact of this number subject to different computational constrains. To customize the network to a desired complexity, we can simply apply a scale factor $ s $ on the number of channels. For example, we denote the networks in Tablearch as "ShuffleNet 1 $ \times $ ", then "ShuffleNet $ s\times $ " means scaling the number of filters in ShuffleNet 1 $ \times $ by $ s $ times thus overall complexity will be roughly $ s^2 $ times of ShuffleNet 1 $ \times $ .
在第4.1.1节中, 我们将研究此数字在不同计算约束下的影响。要将网络自定义为所需的复杂度,我们可以简单地应用比例因子 s在通道数上 。表 1探索了不同的组号,我们调整了输出通道以确保总体计算成本大致不变(〜140 MFLOP)。其中网络表示 为“ ShuffleNet 1×”,然后ShuffleNet s×表示在ShuffleNet 1中缩放过滤器数量× s 因此,总体复杂度将大致 $ s^2 $个 “ ShuffleNet 1×”。
表1: ShuffleNet体系结构
Experiments 实验
We mainly evaluate our models on the ImageNet 2012 classification dataset. We follow most of the training settings and hyper-parameters used in , with two exceptions: (i) we set the weight decay to 4e-5 instead of 1e-4 and use linear-decay learning rate policy (decreased from 0.5 to 0); (ii) we use slightly less aggressive scale augmentation for data preprocessing. Similar modifications are also referenced in because such small networks usually suffer from underfitting rather than overfitting. It takes 1 or 2 days to train a model for $ 3\times 10^5 $ iterations on 4 GPUs, whose batch size is set to 1024. To benchmark, we compare single crop top-1 performance on ImageNet validation set, i.e. cropping $ 224\times 224 $ center view from $ 256\times $ input image and evaluating classification accuracy. We use exactly the same settings for all models to ensure fair comparisons.
我们主要评估对ImageNet 2016分类数据集上的模型 [ 26,4 ]。我们使用自己开发的系统进行训练,并遵循[ 37 ]中使用的大多数训练设置和超参数 ,但有两个例外:(i)将权重衰减设置为4e-5而不是1e-4,并使用线性衰减学习率策略(从0.5减少到0);(ii)我们在数据预处理中使用略微不那么激进的积极扩展。在[ 12 ]中也引用了类似的修改, 因为这样的小型网络通常遭受欠拟合而不是过度拟合的困扰。在4个GPU上训$ 3\times 10^5 $迭代 需要1或2天,其批量大小设置为1024.
为了进行基准测试,我们在ImageNet验证集上比较了top-1的性能,即裁剪224×224 的中心视图 256× 输入图像并评估分类准确性。我们对所有模型的设置完全相同的设置以确保公平比较。
Ablation Study 消融研究
The core idea of ShuffleNet lies in pointwise group convolution and channel shuffle operation. In this subsection we evaluate them respectively.
ShuffleNet的核心思想在于第3.1节和第 3.2节中引用的逐点分组卷积和通道混洗操作 。在本小节中,我们分别对其进行评估。
Pointwise Group Convolutions 逐点分组卷积
To evaluate the importance of pointwise group convolutions, we compare ShuffleNet models of the same complexity whose numbers of groups range from 1 to 8. If the group number equals 1, no pointwise group convolution is involved and then the ShuffleNet unit becomes an "Xception-like" structure. For better understanding, we also scale the width of the networks to 3 different complexities and compare their classification performance respectively. Results are shown in Tablegroupconv.
我们比较了复杂度相同的ShuffleNet模型,其群数范围为1到8。如果群数等于1,则不涉及逐点群卷积,然后ShuffleNet单元变为“ Xception-像“ [ 3 ]结构。为了更好地理解,我们还将网络的宽度缩放到3个不同的复杂度,并分别比较它们的分类性能。结果示于表 [2](https://www.aiqianji.com/papers/17