美丽计划是一款美颜智能应用,目标是提高用户颜值,包括颜值评测,缺陷报告,颜值PK等。

chenqiujuan 4522d37602 fix HomeFragment 23 hours ago
App 4522d37602 fix HomeFragment 23 hours ago
data 29c986ca8d add template 2 months ago
doc 23ff0f172a add readme 1 month ago
img fe85ac0b2e Initial commit. 6 months ago
leaderboard 33b7797ed1 fix interest 4 days ago
model 96c7ae7d1d fix leaderboard 4 months ago
python 23ff0f172a add readme 1 month ago
test fe85ac0b2e Initial commit. 6 months ago
.gitattributes fe85ac0b2e Initial commit. 6 months ago
.gitignore 5f95f6c568 fix optimizer 3d 3 months ago
LICENSE fe85ac0b2e Initial commit. 6 months ago
readme.md e30a4ed59a add soft copyright 1 week ago
readme_cn.md e30a4ed59a add soft copyright 1 week ago

readme.md

爱美丽 Beauty

Help you become beautiful [china software copyright 10293875]


简体中文

Features

Beauty is an AI drive app that can help user become beautiful.

it contain those functions:

  1. face score cheek

  2. face beauty report

  3. face imporve proposals

  4. face comparison ( pk )

right now, it can only support asian women

and other function is under construction

The latest Android Version download:

https://gitee.com/knifecms/beauty/releases

google play market:

https://play.google.com/store/apps/details?id=com.ml.projects.beautydetection

(there is no web connection data transfer, every function works in mobile locally )

| | | | |---|---|---|

Project Introduce

1.face contour detection

use Dlib

2.face skin detection

byol + lda

3.Overall characteristics

resnet

Sub projects

  1. android beauty app

  2. deep learning face beauty research

  3. asian face leaderboard

    and leaderboard website: http://1mei.fit

Environment

  • Python 3.8

Usage in python

1.clone:

git clone https://gitee.com/knifecms/beauty.git
or
git clone https://github.com/showkeyjar/beauty.git

2.Install depend;

2.1 new install:
conda install cmake
conda install nodejs
conda install dlib
2.2 Import conda env:
conda env create -f face.yaml

3.Modify predict.py image path

# change the detect image path
test = "data/2.jpg"

4.Execute:

python predict.py

you can get beauty score in [0-5], the higher the better

5.Interpretation of results:

execute dir landmarks/ 

    1_gen_feature.py 

    2_prepare_data.py 

gen features in: data/face/features.csv

then run:

python predict_interpret.py

6.run in cam:

python predict_cam.py

7.run web service:

python predict_server.py

or run:

./restart_server.sh

preview:

http://locahost:5000/pred

we use two tech to explain result: lime and shap(recommend)

face point

face_reoprt

Todo

1.redesign the face report, do not use AI explain framework but combine small face part scores.

2.face score explain(已添加点位和身体部位对应名称); (使用传统切割手段 和 胶囊图网络Capsule GNN 对比使用 https://github.com/benedekrozemberczki/CapsGNN https://github.com/brjathu/deepcaps )

3.use lbph in android to detect skin type

4.use semantic structural features(识别特定皮肤纹理等)

DEV:

train data:

https://github.com/HCIILAB/SCUT-FBP5500-Database-Release

Directory description:

App             android project
dl              deep learning models
doc             documents
feature         face features
landmarks       face landmarks process
leaderboard     asian face leaderboard
logs            log dirs
model           trained models
static          flask web assets
template        flask templates
test            unit test

ak net

reference

《女性美容美体小百科》

https://wenku.baidu.com/view/b10e711ba58da0116c1749e6.html

https://wenku.baidu.com/view/29392bbb9fc3d5bbfd0a79563c1ec5da50e2d6eb.html

https://max.book118.com/html/2017/1115/140076049.shtm

Other research progress

https://github.com/bknyaz/beauty_vision

https://github.com/ustcqidi/BeautyPredict

http://antitza.com/assessment_female_beauty.pdf

The Beauty of Capturing Faces: Rating the Quality of Digital Portraits https://arxiv.org/abs/1501.07304v1

SCUT-FBP5500: A Diverse Benchmark Dataset for Multi-Paradigm Facial Beauty Prediction https://arxiv.org/abs/1801.06345v1

Understanding Beauty via Deep Facial Features: https://arxiv.org/pdf/1902.05380.pdf

Welcome contributions

QQ group: 740807335

wechat:

wechat